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Abstract

Rare variants are believed to play an important role in disease etiology. Recent advances in high-throughput
sequencing technology enable investigators to systematically characterize the genetic effects of both common and
rare variants. We introduce several approaches that simultaneously test the effects of common and rare variants
within a single-nucleotide polymorphism (SNP) set based on logistic regression models and logistic kernel machine
models. Gene-environment interactions and SNP-SNP interactions are also considered in some of these models. We
illustrate the performance of these methods using the unrelated individuals data from Genetic Analysis Workshop
17. Three true disease genes (FLT1, PIK3C3, and KDR) were consistently selected using the proposed methods. In
addition, compared to logistic regression models, the logistic kernel machine models were more powerful,
presumably because they reduced the effective number of parameters through regularization. Our results also
suggest that a screening step is effective in decreasing the number of false-positive findings, which is often a big
concern for association studies.

Background
High-throughput sequencing technologies have been
evolving extraordinarily fast in the past few years. They
have been recently applied to genome-wide association
studies to study the effects of both common and rare
variants. The different natures of these two types of var-
iants call for distinct methods. For common variants,
association tests based on individual SNPs are still
widely used. However, such approaches suffer from mul-
tiple comparison problems and do not take into account
possible interactions among variants. To overcome these
limitations, analyses based on single-nucleotide poly-
morphism (SNP) sets have been developed to test the
joint effect (either linear or nonlinear) of variants within
a SNP set. For instance, Wu et al. [1] proposed a ker-
nel-machine-based method for association studies; this
approach is flexible for modeling various interactions
and nonlinear effects. Mukhopadhyay et al. [2] derived
similarity scores of genotypes between pairs of indivi-
duals using a kernel and then used these scores as the

response variable in an analysis of variance (ANOVA)
model to establish association between genotypes and
phenotypes. Such methods tend to be more powerful
and flexible than individual-SNP analysis.
Although many genome-wide association studies in

the past focused on common variants, it is now widely
believed that for complex diseases, rare variants are
more likely to be functional than common variants [3].
Because rare variants usually have low marginal effects,
multiple rare variants within a SNP set (e.g., a gene or
a pathway) are often combined into a single variable to
be used in tests for association. For example, Li and
Leal [4] proposed a method for collapsing multiple
rare variants into a single indicator that recorded
whether or not the genome contained any rare variants
for the SNP set under consideration; Madsen and
Browning [5] proposed a weighted-sum score, where
the weight for each variant indicator (0 for absent and
1 for present) was proportional to the inverse of its
estimated standard deviation in the population. An
overview of rare variant collapsing methods is provided
by Dering et al. [6].* Correspondence: ruwang@ucdavis.edu
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To effectively detect association signals, investigators
might find it beneficial to jointly model the common
and rare variants and to account for correlations among
both variants. For this purpose, in this paper we intro-
duce several methods to jointly model the common and
rare variants within a SNP set. Note that throughout
this paper SNPs with minor allele frequency (MAF) less
than 1% are treated as rare variants and all other SNPs
are treated as common variants.
We start with logistic regression models, including

gene-environment interaction terms, and derive score
statistics for testing the presence of any marginal or
interaction effects. We then consider logistic kernel
machine models, which can incorporate both interac-
tions among SNPs and gene-environment interactions.
This type of model is an extension of the method pro-
posed by Wu et al. [1] and Liu et al. [7]. We also intro-
duce a summary score for combining common variants
based on the idea of principal fitted components [8],
which is then used to reduce the dimensionality of the
logistic regression model. We then use the 200 indepen-
dently simulated data sets for unrelated individuals from
Genetic Analysis Workshop 17 (GAW17) [9] to illus-
trate these methods, where a SNP set is defined as the
observed SNPs (common and rare) within a gene. We
also use a two-stage procedure, consisting of a screening
stage and a testing stage, when analyzing the GAW17
data. The results suggest that the kernel machine meth-
ods enjoy better power than the score tests and that the
screening stage helps to reduce the number of false-
positive findings.

Methods
Logistic regression models and score tests
For the ith individual (i = 1, …, n), let response yi be 0 if
the individual is unaffected and 1 if affected. Let Xi be a
q × 1 covariates vector (including an intercept term), zi
be a p × 1 vector of SNP genotypes (or summary scores)
for a given gene (SNP set) under testing, and si be the
environment covariate that is also included in Xi. We
consider the following logistic regression model with
gene-environment interactions:

logit 1, ..., ,( ) ,p X a z s b z i ni i
T T

i i
T

i= + + =b (1)

where:

p y X zi i i i= =Pr( , )1 . (2)

The goal is to test the null hypothesis H0: a = b = 0,
and we consider the corresponding score statistic. For a
detailed derivation and expression of the score statistic,
see Wang et al. [10].

Logistic kernel machine models
Following Wu et al. [1] and Liu et al. [7], we now
extend Eq. (1) to a semiparametric logistic regression
model:

logit 1, ..., ,( ) ( ) ( ),p X h z s g z i ni i
T

i i i= + + =b (3)

where h(·) and g(·) belong to reproducing kernel Hil-
bert spaces HK and HK generated by kernels K(·, ·) and
K (·, ·), respectively. The penalized likelihoods h(·) and
g(·) can be estimated by:
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Following Liu et al. [7], the solutions to Eq. (4) have
the same form as the penalized quasi-likelihood estima-
tors from the logistic mixed model:

logit 1, ..., ,( ) ,p X h s g i ni i
T

i i i= + + =b (5)

where h N Ki n
i.i.d.

( , ( / ) )0 1 l , g N Ki n  
i.i.d.

( , ( / ) )0 1 l
(i.i.d. stands for independent and identically distributed),
 K K z zi j: ( ( , ))= ,  K K z zi j: ( ( , ))= , and the hi and gi are
independent. Denote τ = 1/l and  t l= 1 / . Now, test-
ing the null hypothesis of no genetic effects, H0: h(·) = g
(·) = 0 in Eq. (3) can be reformulated as testing the
absence of the variance components, H0: τ = t t= = 0 =
0 in model (5). As in Wu et al.’s [1] and Liu et al.’s [7]
papers, we consider the (two-dimensional) test statistic:

Q
Q

Q

*
*

*
=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t

t
, (6)

which is based on the score statistic of ( , )t t . The
two components of Q* can be approximated by scaled
chi-square distributions k ct ut

*
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tively, through matching the means and variances [7].
Finally, we construct a combined test statistic:
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The corresponding p-value is then:

p F Q F Q= −1 2 2c t c tu u( , ) ( , )max
* *

max
* *

 , (8)

where Fc u2 ( , )⋅ is the cumulative distribution func-
tion of a chi-square distribution with υ degrees of free-
dom. For detailed derivations and expressions of Q*,
kt
* , kt

* , ut
* , and ut

* , see Wang et al. [10]. Note that
when both K and K are linear kernels, that is,
K z z K z z z zi j i j i

T
j( , ) ( , )= = , models (1) and (3) have
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the same form. However, they are treated differently,
and consequently the corresponding test statistics are
different.

Summary score for common variants
For a gene with p common variants, we introduce the
summary score:
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where Iik is the number of times the kth variant is
observed in the ith individual,
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and mk
A and mk

U are the number of times the kth
variant is observed among affected and unaffected indi-
viduals, respectively, and nA and nU are the total num-
bers of affected and unaffected individuals, respectively.
This summary score is derived based on the idea of
principal fitted components for dimension reduction [8].

Two-stage procedure
We propose a two-stage procedure to analyze the
GAW17 data. In the screening stage, genes that do not
show any statistical significance are filtered out. The
main purpose of this stage is to achieve dimension
reduction and at the same time to retain genes that are
more likely to be associated with the disease. In the test-
ing stage, we apply various methods to test the subset of
genes that have passed the screening criteria.
In the screening stage, both genetic effects and gene-

environment interaction effects are investigated, and
common and rare variants are handled differently. Com-
mon variants are tested in the three subpopulations
(Europeans, Asians, and Africans) separately, whereas
rare variants are studied based on the whole population.
For each gene, the genotypes of the common variants
(coded 0, 1, or 2, denoting the number of minor alleles)
are treated as a vector and the Hotelling T2 test is used
to test whether there is a mean difference between the
affected and unaffected individuals [4]. For rare variants,
weighted-sum scores [5] are derived for the synonymous
and nonsynonymous groups, denoted WSsyn and WSnon-
syn, respectively. Then a two-dimensional Hotelling T2

test is performed based on WSsyn and WSnonsyn. To test
gene-environment interactions, we consider the null

hypothesis Corr(G, E|Y = 0) = Corr(G, E|Y = 1). We
take the difference between Fisher’s z transformations of
sample correlations for the affected and unaffected
groups as the test statistic:
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Again, instead of testing each variant individually, we
use combined scores for both common variants (Eq. (9))
and rare variants (the weighted-sum score) and test
gene-environment interactions for each SNP set as a
whole. In addition, for rare variants, we consider only
the nonsynonymous variants.
In all the tests, the p-values are determined through

permuting disease status (while keeping the total num-
bers of affected and unaffected individuals unchanged).
Finally, genes are deemed to pass the screening and
become candidates for the testing stage if they have
(unadjusted) p-values smaller than a prespecified thresh-
old (e.g., 0.1) for at least one of the tests.
In the testing stage, two kinds of models are consid-

ered: logistic regression models (Eq. (1)) and logistic
kernel machine models (Eq. (5)). For all models, the
covariates vector consists of Age, Sex, two principal
component scores to account for population structure
(see Results section for more details), and an environ-
mental factor (Smoke status). For rare variants, we
further introduce a combined weighted-sum score:
WScombined = WSsyn + 2WSnonsyn, (13)
where nonsynonymous variants receive more weight.
For logistic regression models, we consider two differ-

ent scenarios for the common variants, one using the
original genotypes (referred to as logistic regression) and
the other using the common score (Eq. (9)) with the
weights calculated based on the corresponding screening
data set (referred to as the logistic common score). In
addition, WScombined is used for both scenarios. Finally,
score statistics are calculated and the p-values are deter-
mined using theoretical chi-square distributions.
For logistic kernel machine models (Eq. (5)), the origi-

nal genotypes are used for common variants. We con-
sider two different schemes for the kernels. One uses
linear kernels for both K and K , and the other uses a
quadratic kernel for K that models interactions among
variants and a linear kernel for K . It is expected that
the quadratic kernel will be more powerful if there are
SNP-SNP interactions and that the linear kernel will be
more powerful if such interactions are absent. For the
quadratic kernel case, WScombined is used and the
method is referred to as the quadratic rare WScombined

method. For the linear kernel case, two scenarios are
considered for combining rare variants, one using
WScombined (referred to as the linear rare WScombined
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method) and the other using WSnonsyn (referred to as
the linear rare WSnonsyn method). Moreover, for the ker-
nel machine methods, the weighted-sum scores for rare
variants and the genotypes of the common variants are
both standardized (to have mean 0 and standard devia-
tion 1) before model fitting.
In total, we consider five different methods in the test-

ing stage, which are summarized in Table 1.

Results
GAW17 data description
The GAW17 data we analyzed in this paper have 200
replicates, each consisting of data for 697 unrelated indi-
viduals. The genotypes, age, and sex of these individuals
are from real studies and are kept fixed across the 200
replicates. One environmental risk factor (smoking sta-
tus) and a binary disease status were simulated for each
replicate [9]. Moreover, in all these replicates, the total
numbers of affected and unaffected individuals are fixed
to be 209 and 488, respectively, which reflects the popu-
lation prevalence of this disease.
The 697 individuals were from seven different sources:

Denver Chinese, Han Chinese, Japanese, Luhya, Yoruba,
CEPH (European-descended residents of Utah), and
Tuscan. Through principal components analysis on
about 1,000 common variants (distance ≥ 50,000 bp)
with MAF larger than 10%, the first two principal com-
ponents clearly divide the sample into three distinct
clusters, corresponding to Africans (Luhya and Yoruba),
Asians (Chinese and Japanese), and Europeans (CEPH
and Tuscan).
The genotype data consist of 24,487 SNPs from 3,205

genes on 22 autosomal chromosomes. The MAF for
74% of the SNPs is less than 1%. In our analysis, these
are treated as rare variants, whereas all other SNPs are
treated as common variants. Moreover, 2,208 genes con-
tain at least one common variant, and the maximum
number of common variants within a gene is 52. A total
of 2,476 genes contain at least 1 rare variant and the
maximum number is 179. One hundred sixty-two rare
variants were removed from the analysis because they
appeared in only one individual. Genes with a rare var-
iant event occurring in less than 1% of individuals were
removed, and 2,534 genes were left for subsequent

analysis. Genotypes are coded as 0, 1, or 2, indicating
the number of minor alleles at each locus.

Findings
We randomly divided the 200 simulated replicates into
100 pairs. For each pair, one data set was used for
screening and the other was used for testing. Across the
100 screening data sets, if a 0.1 threshold was used, the
mean number of genes passing screening was 1,307 and
8 genes (RUNX2, MUC3A, TMEM67, NIBP, AKAP2,
GOLGA1, USP5, and FLT1) were selected at least 95
times. If a 0.05 threshold was used, the mean number of
genes passing screening was 824 and 1 gene (FLT1) was
selected 95 times. For each pair of screening and testing
data sets, genes that passed the screening step were
tested using the five methods described in the Methods
section. P-values were adjusted using the Holm proce-
dure [11], which is an improvement of the Bonferroni
procedure and controls the family-wise error rate. A
gene was then said to be selected by a method if its cor-
responding adjusted p-value was less than 0.1. Through-
out the 100 pairs of screening and testing data sets, if a
threshold of 0.1 was used in the screening step, then
four genes (FLT1, PIK3C3, KDR, and PRR4) were
selected more than 10 times by at least one of the five
testing methods. In contrast, if no screening was used (i.
e., all 2,534 genes were passed to the testing stage), nine
genes were selected more than 10 times by at least one
of the five testing methods. The selection frequencies of
these genes are illustrated in Figure 1.
As can be seen from Figure 1, FLT1 was selected

more than 40 times using the linear rare WScombined

method and more than 50 times using the linear rare
WSnonsyn method. Moreover, PIK3C3 and KDR were
selected about 20 times using the linear rare WScombined

method and the quadratic rare WScombined method,
respectively. Note that the quadratic kernel model is
capable of capturing some of the SNP-SNP interaction
effects, whereas the linear kernel model does not. Thus
the fact that the quadratic kernel works better for KDR
may imply that there are potential SNP-SNP interaction
effects in this gene, which may result from the compli-
cated disease model and/or correlation structure among
the SNPs. Compared with the kernel machine methods,

Table 1 Methods in the testing stage

Method Model Kernel Common variants Rare variants

Logistic regression Logistic regression NA Genotypes WScombined

Logistic common score Logistic regression NA Common score WScombined

Linear rare WScombined Kernel machine Linear Genotypes WScombined

Linear rare WSnonsyn Kernel machine Linear Genotypes WSnonsyn
Quadratic rare WScombined Kernel machine Quadratic Genotypes WScombined
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the two logistic regression methods gave less consistent
results in terms of gene selection across the replicates.
Furthermore, summarizing information of common var-
iants by using the common score seemed to improve
the power of the logistic regression model slightly.
Gene FLT1 is on chromosome 13, and it contains 35

SNPs, of which 25 are rare variants. Applying the logis-
tic regression model with gene-environment interaction
(Eq. (1)) on the first replicate indicated that the (com-
mon) variant C13S523 was associated with disease status

highly significantly (nominal p = 0.000817). This variant
was nonsynonymous with a MAF of 6.7%. The
weighted-sum score of the rare variants in FLT1 also
showed evidence of association (nominal p = 0.0033).
Gene KDR is on chromosome 4 with 14 rare variants
and 2 common variants. Gene PIK3C3 has 7 variants (6
rare variants and 1 nonsynonymous common variant). It
also seemed that this common variant was the reason
that PIK3C3 was picked by the linear rare WScombined

method about 20 times across the 100 replicates.

FLT1 PIK3C3 KDR PRR4

Quad rare.WS.combined
Linear rare.WS.combined
Linear rare.WS.nonSynonymous
Logistic common.score
Logistic regression

Screening Threshold=0.1

0
10

20
30

40
50

60

FLT1 PIK3C3 KDR PRR4 TAS2R48 LOC645118 JAK1 NOTCH2NL INSR

Quad rare.WS.combined
Linear rare.WS.combined
Linear rare.WS.nonsynonymous
Logistic common.score
Logistic regression

No Screening

0
10

20
30

40
50

60

Figure 1 Frequently selected genes and their selection frequencies. For each gene, the height of the bar represents the number of times it
has been selected across the 100 screening-testing pairs.
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The results were obtained without knowledge of the
underlying disease model. Afterward, we examined the
GAW17 simulation model [9]. It turns out that, FLT1,
PIK3C3, and KDR are true disease susceptible genes.
However, other genes reported in Figure 1 were not
directly related to disease status. By comparing the top
and bottom panels in Figure 1, we see that the proce-
dure with a screening step is effective in eliminating
such genes. A closer look at the results reveals that
these genes are mainly filtered by the screening step.
For instance, TAS2R48 was detected as a significant
gene among 18 (out of 100) data pairs by the linear rare
WScombined method when no screening was applied.
However, for 15 out of 18 pairs, TAS2R48 would not
pass the screening step if a 0.1 threshold was used.

Conclusions
In this paper, we considered SNP set analysis for detect-
ing disease-susceptible variants using exon sequence
data. In large-scale association studies, there is often a
need to combine information across variants to improve
detection power. This is especially the case for rare var-
iants. Here, we adopted the weighted-sum score of Mad-
sen and Browning [5] to summarize information across
rare variants within each SNP set. In addition, we pro-
posed a summary score based on principal fitted com-
ponents [8] to combine information across common
variants. Moreover, the large number of variants poses
challenges, such as multiple comparisons and modeling
various interactions. To address this issue, we extended
the logistic kernel machine methods used by Wu et al.
[1] and Liu et al. [7] to include gene-environment inter-
actions. Compared to logistic regression models, the
logistic kernel machine models were more powerful,
estimating the degrees of freedom in a data-adaptive
way by accounting for correlations among the SNPs.
Thus they reduced the effective number of parameters
and consequently enjoyed improvements in power. Ker-
nel machine models also had greater degrees of flexibil-
ity in modeling interactions and nonlinearity. We also
applied a two-step procedure consisting of a screening
stage and a testing stage to the GAW17 data. The
results suggest that the screening stage is effective in
decreasing the number of false-positive findings, which
is often a big concern for association studies.
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