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Background
Few evidence-based best practice bioinformatics guide-
lines exist for genotyping using next-generation
sequencing data, especially colorspace data produced
by Life Technologies sequencers. Dozens of software
packages can perform the various steps required, and
genome features such as pseudogenes or large paralo-
gous gene families are problematic. High false positive
and negative rates can compound the difficulty of
cohort analysis.

Materials and methods
Using a Sanger-validated set of 32 BRCA gene regions
from 16 patients, high-throughput colorspace (Life
Technologies) sequencing performance was optimized
by comparing various combinations of sequence
aligners, re-aligners, de-duplicators, quality re-calibrators
and genotype callers. Independently, six exomes were
captured using the Agilent SureSelect v3 kit. The opti-
mized pipeline was applied, and results were compared
to microarray genotyping to characterize false positives
and negatives. A further four exomes were pair-end
sequenced on both the Life Technologies 5500x1 and
Illumina HiSeq sequencers to check platform concor-
dance. Variant metrics for each exome were compared
to the literature.
In the clinic, individual exomes are manually triaged

by a medical geneticist, and salient variants are con-
firmed by Sanger sequencing. For disease cohorts, soft-
ware was developed to isolate variants possibly causing
monogenic rare diseases, taking likely false positives into
account.

Results
Using results from Life Technologies’ reference genome
aligner, the intersection of single nucleotide polymorphism
(SNP) calls from FreeBayes [1] (with SamTools [2] de-
duplication) and Life Technologies’ diBayes (with Picard
de-duplication) was optimal. Using reads realigned by the
Broad Institute Genome Analysis Toolkit (GATK) [3], the
intersection of insertion and deletion calls from FreeBayes
and Atlas2 [4] was optimal. A threshold of 14% variant
reads for true heterozygous calls was observed.
For bases with 10× coverage, variant calls are on aver-

age 98.9% concordant with SNP microarrays (versus
99.2% microarray technical reproducibility [5]). False
positive and negative variant rates are each approxi-
mately 0.5%, with all false positives called heterozygous.
Concordance with Illumina variant calls from a standard
GATK pipeline was 95.2%. GATK produced more novel
variants, especially in non-unique genomic regions: such
variants are flagged with caveats in the colorspace pipe-
line. In a dominant heterozygous model analysis of five
Nager syndrome patients, our cohort analysis software
excluded 15 of 19 candidate genes, based mainly on a
preponderance of genotype caveats.
Many published metrics for SNP quality control are

based on a small number of genomes elucidated using
other technologies, but Table 1 shows overall agreement
with the optimized colorspace pipeline results.

Conclusions
Low false positive and negative rates using colorspace
data can be achieved by: first, reporting only concurrent
variants from ultiple methods; and second, reporting
caveats where the reference sequence is not unique.
Accurate calls and caveats enable major cohort gene
triage when modeling diseases caused by monogenic
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Table 1 Quality metrics reported in the literature, and
the optimized colorspace genotyping results.

Ideal Colorspace exome
average

Protein coding 0.048%
[6]

0.052

Non-coding >coding 0.056

Non-synonymous 45% [7] 46.2

Homozygous 37-40%
[8]

38.7

Coding SNP transitions:
transversions

2.8-3.0:1
[9]

3.2:1

Non-coding SNP transitions:
transversions

2.0-2.2:1
[9]

2.3:1

CDS novel (versus dbSNP135) N/A 0.58

N/A, not applicable
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