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Abstract

the accuracy of such predictions.

Background: Low dimensional maps of protein structure space (MPSS) provide a powerful global representation of
all proteins. In such mappings structural relationships are depicted through spatial adjacency of points, each of
which represents a molecule. MPSS can help in understanding the local and global topological characteristics of
the structure space, as well as elucidate structure-function relationships within and between sets of proteins.

A number of meta- and method-dependent parameters are involved in creating MPSS. However, at the state-of-
the-art, a systematic investigation of the influence of these parameters on MPSS construction has yet to be carried
out. Further, while specific cases in which MPSS out-perform pairwise distances for prediction of functional
annotations have been noted, no general explanation for this phenomenon has yet been advanced.

Methods: We address the above questions within the technical context of creating MPSS by utilizing
multidimensional scaling (MDS) for obtaining low-dimensional projections of structure alignment distances.

Results and conclusion: MDS is demonstrated as an effective method for construction of MPSS where related
structures are co-located, even when their functional and evolutionary proximity cannot be deduced from
distributions of pairwise comparisons alone. In particular, we show that MPSS exceed pairwise distance distributions
in predictive capability for those annotations of shared function or origin which are characterized by a high level
of structural diversity. We also determine the impact of the choice of structure alignment and MDS algorithms on

Background

Understanding the molecular bases of protein structure
and protein function is the preeminent challenge of
molecular biology. One of the important problems in
this context is that of obtaining a holistic description of
protein architecture and to aid determination of structure-
function relationships. In recent years, increasing availabil-
ity of structural data has made it possible to rigorously
investigate this question. However, even in the early days
of molecular biology, when only a few thousand structures
had been solved, researchers had espoused the importance
of obtaining a grand view of the “universe” of all possible
proteins [1,2]. To develop an intuition for this formulation,

* Correspondence: rahul@sfsu.edu

2Department of Computer Science, San Francisco State University, 1600
Holloway Ave, San Francisco, CA, 94132, USA

Full list of author information is available at the end of the article

it is helpful to imagine every protein structure as a point in
an abstract high dimensional fold space (hereafter called
the protein structure space and abbreviated as PSS). Given
a collection of proteins, such as the PDB, one can then ask
a number of questions. For instance, do all the structures
lie on a manifold in the PSS (i.e. is there a prominent
shape to the distribution of structures)? How do functional
characteristics map to specific regions of the PSS and vice-
versa? How varied is the distribution of molecules in this
space? The reader may note the fundamental nature of
these questions and their relation to the dominant folding
pathways, evolutionary processes, and physical constraints
that interact to create all proteins.

A natural way to characterize a set of protein structures
is through the set of pairwise distances computed for all
proteins in the set using a suitable method for determining
structure similarity. The set of all pairwise distances can
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then be used to map (define) a PSS by embedding the
pairwise distances in a low dimensional space in a manner
that is injective and minimally distorts the inter-structure
dissimilarity information. In this paper we refer to this low
dimensional representation as a map of the protein struc-
ture space (MPSS). In the context of creating such maps,
the embedding methods that have been traditionally used
include multidimensional scaling [1,3-5], correspondence
analysis using reciprocal averaging [2], and principle com-
ponent analysis [6]. Of these, multidimensional scaling has
been the most widely used approach.

Problem formulation

MPSS have been used to characterize an overall picture of
protein space and predict annotations of protein structure.
However, there has been little investigation of the effects
of critical parameters on MPSS representations of protein
space. Such parameters include the set of structures con-
sidered, choice of distance measure (i.e. the alignment and
scoring methods), whether a degree of sparseness or a
limit on maximum distance are present or imposed, and
finally the choice of the method for computing the low
dimensional embedding (projection). Furthermore, while a
differential accuracy in prediction of functional annotation
has been noted for particular annotations [4], no hypoth-
esis has been put forward to explain this phenomenon. It
is also unclear as to under what circumstances there is a
consistent advantage in prediction of functional or other
annotations using MPSS distances rather than distribu-
tions of pairwise structural differences.

In this paper we examine the influence of critical
parameters on the construction of MPSS using multidi-
mensional scaling (MDS), a widely employed method
for low-dimensional projection. Our analysis includes
the impact of specific measures of structural similarity
and the influence of the specific algorithm for MDS
(either “classical” or “iterative majorization,” vide infra)
on the MPSS. Further, we show that different groups of
structures with common evolutionary origins are charac-
terized by different levels of structural diversity, and that
groups possessing high levels of structural diversity are
not well captured by pairwise distances. In contrast,
proximity within a MPSS predicts shared evolutionary
origins of diverse groups with nearly the same efficacy as
structurally self-similar groups. We also investigate the
relative predictive capacities of MPSS generated using
similarity scores obtained from the CE, Dali and FAT-
CAT structure alignment algorithms. Finally, we investi-
gate how this predictive capacity is altered by the choice
of the multi-dimensional scaling algorithm.

Data set
The set of protein structures used constitutes an essen-
tial parameter for MPSS construction because a MPSS
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localizes a structure in terms of its distance from the
other structures. Given that we seek to characterize fold
space globally in addition to multiple large structure
families, we employ approximately 4,000 structures from
the Nov. 2008 PDBSelect25, a list of non-redundant
structures from the PDB, clustered at 25% sequence
identity [7]. This set contains disparate structures repre-
senting the extents of the protein universe. Further,
empirical studies indicate that subsampling, down to
1,000 or fewer structures, does not appear to qualita-
tively alter any of the results presented in this paper
(data not shown).

Methods

Measurement of protein distances

The dissimilarity or distance between pairs of individual
protein structures can be estimated using algorithms for
pairwise alignment of protein structures. Such algorithms
typically produce a similarity score as well as the align-
ment itself. For a set of N structures, a symmetric N x N
matrix of similarity scores for all possible pairs can be con-
structed by performing the N(N + 1)/2 unique, non-self
pairwise alignments. Similarity scores must be inverted if
they are to represent distances or dissimilarities. To avoid
the introduction of bias by extremely high-scoring outliers,
the similarity score s, with the p™ percentile rank is trea-
ted as a maximum similarity. The index # of the p™ per-
centile of N sorted similarity scores is computed using
Equation (1). In turn, the enforced saturation of similarity
scores implies the assumption of an “infinity distance”
beyond which increasing distance does not indicate signifi-
cant increase in real dissimilarity. Given pairwise similarity
scores s; ;, for all pairs of structures i and j, the distances
0, j are given by Equation (2).

B p
"7 100 x (N(N +1)/2+1) @)

Sn — Sij, Sn > Sij, i #]
0o i=j (2)
Sn = Si,j

61,]‘ =
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Different alignment methods employ distinct alignment
algorithms as well as measures of overall alignment sig-
nificance or pairwise structural similarity. To study the
influence of alignment methods on the MPSS, we use
three widely used methods: CE [8], Dali [9] and FATCAT
[10]. Implementations of the three alignment methods
are provided by the BioJava bioinformatics library [11]
and by the DaliLite workbench [12]. Here we use the raw
similarity scores determined by these algorithms rather
than transformed scores representing statistical signifi-
cance or other measures of saliency. Whether or not
scores are transformed, and if so how (e.g. statistical
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standardization or protein length normalization), consti-
tutes an additional parameter, consideration of which is
beyond the scope of the present work.

Low-dimensional projection using classical MDS

Let d;;(X) be the Euclidean distance between points i
and j in a d-dimensional configuration X containing N
points, then the matrix of inner products A = XX” is
derived following Equations (3) and (4). The scaling pro-
blem consists in solving Equation (4) for a configuration
X, with empirical distances d substituted for the d;(X).

d d d
dfj X) = ;; X5+ }; Xﬁ -2 }; Xie X (3)

d 1 d d
Ajj = (XxT)i]_ = ;; XXy = — ) (dfj X) — };x}k - kzlek) (4)

Note that the diagonal summation terms may be obtained
directly from ¢ as the sum of row, column and grand
means. Now, consider some configuration X, the coordi-
nates of which are normalized by their sums squared, yield-
ing coefficients placed in a diagonal matrix A*”? and
orthonormal vectors v. The inner product matrix 4 in
terms of A”Z and v is given by Equation (5) (recall that the
inverse and the transpose of an orthogonal matrix are
equivalent). However, this is equivalent to Equation (6),
which we recognize as specifying the Eigen-structure of A.

A=XX"= (A"?v) (Xl/zv)T =vav’ = vav! (5)

Av = Av (6)

The k™ coordinate of the i™ point is found by Eigen-
decomposing A and applying Equation (7):

Xik = v/ Aevie, k€ [1,d] (7)

Since we are interested in dimensionality reduction we
choose d << N even though in general A possesses N-I
non-zero eigenvalues. This procedure inevitably discards
information; the proportion of information (i.e. displace-
ment between various points) discarded is equivalent to
the square root of the sum of the unused eigenvalues
divided by the sum of all eigenvalues. Further informa-
tion regarding classical MDS, including detailed proofs
of the above, may be found in [13,14].

Scaling by majorizing a complex function (SMACOF)
The sum-squared deviation, or stress, between a distance
matrix J and the distance distribution of a d-dimensional
configuration of points X is defined by Equation (8):

o (X) = ¥ wyldy (X) —8;)° (8)

i<j<N
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Where w;; is the weight given to the relationship
between points i and j. Classical MDS does not, in gen-
eral, arrive at the set of point with the least stress given
the observed distances, because the relative separation
or proximity of points in dimensions higher than d is
not preserved. In general, it is possible for a minimiza-
tion procedure targeting stress to “fold” these higher
dimensional separations into the d dimensions of the
point cloud.

The stress between a distance matrix and a point con-
figuration can be minimized using iterative majorization,
a procedure from convex analysis with strong conver-
gence and speed guarantees [15]. This approach takes a
configuration of points and perturbs it so as to reduce
the stress induced by the original configuration. In brief,
the new position x’; of a point i given its current position
x; and the current positions of all other points j, is set to
be the weighted average position of all the points, plus a
weighted perturbation specified by the stress specifically
induced between points i and j, as in Equation (9).

A/ 1 al o 51] (fl N J?]) ( )
X = wij | x5+ 9
1 E]Nwl] ZJ: y ]
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The simple form of Equation (9) is due to a convex
relaxation which ensures minimization of Equation (8) can
be reduced to that of a simple quadratic (see [15] for
proof). We use coordinates obtained from classical MDS
as the initial configuration and iteratively evaluate Equa-
tion (9) until the relative change in stress falls below a set
threshold. In this work, the threshold for relative change is
taken to be 0.001, and all weights w;; are taken to be 1.

Results and discussion

Influence of alignment methods on the shape of MPSS
MPSS drawn using classical MDS and distances from
Dali, CE and FATCAT are shown in Figure 1A-C. Each
point represents a protein structure, colored by SCOP
class. The particular shape of the Dali-based MPSS is
caused by Dali’s stringent filter for the significance of an
alignment. For our data set, Dali returned an alignment
score for just 0.05% of about 8 million pairs. This spar-
seness permits only the highest scoring alignments to
influence the final configuration of the MPSS coordi-
nates. MPSS produced with FATCAT and CE have a
roughly pyramidal shape with small proteins and pep-
tides located at the apex, and all a, all B, a+p and a/p
classes forming the sides. MPSS drawn using SMACOF
are shown in Figure 1D-F. While each SCOP class
remains spatially segregated, the points are deformed
towards a somewhat spherical arrangement. All MPSS
were constructed using a distance cutoff percentile of
99.95%.
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Figure 1 MPSS by alignment algorithm and MDS method. (A)-(C) MPSS using classical MDS for Dali, CE and FATCAT, respectively. (D)-(F)
MPSS using SMACOF for Dali, CE and FATCAT, respectively. Each point represents a single structure, colored by SCOP class.

Accuracy of annotation inference using alignment and
MPSS distances

Pairwise alignment scores or distances within a MPSS can
be used to predict annotations of common evolutionary
origin in CATH and SCOP. A simple approach for this
involves selecting a threshold distance and predicting any
proteins separated by a distance equal to or less than the
threshold to be related. In order to investigate the behavior
of this distance based classifier, we construct Receiver
Operating Characteristic (ROC) curves by computing the
true positive rate (TPR or Sensitivity) and false positive
rate (FPR or 1 - Specificity) of classification as the thresh-
old distance is varied across a range. Such ROC plots per-
mit comparison of the accuracy of alternate classifiers; a
uniformly random classifier is indicated by a line at an
angle of 45 degrees, while superior classifiers bend towards
the upper left corner of the graph.

Application of the ROC approach to pairwise alignment
or MPSS data is complicated by the variation of structural
diversity between groups. If a single distance threshold is
applied regardless of within-group distance distribution, a
systematic bias will be introduced, resulting in increased
false positives for structurally homogeneous groups and
increased false negatives for diverse groups. We avoid the
bias of a single threshold by directly varying percentile
ranking, which is used to compute a unique threshold for
each group. The same percentile rank will give a lower
threshold for self-similar groups and a higher one for
diverse groups. The threshold 7T for a group given the p™
percentile value # of all N sorted distances d; is deter-
mined by using Equation (1) and setting T = d,,. For this
group and percentile rank, any structures found within the

cutoff distance T of each other are considered positive
matches. Small groups, possessing fewer than ten mem-
bers, are excluded from consideration as small collections
are likely to have low signal-to-noise ratios. The groups
which meet this criterion within our data set are listed in
Table 1.

Figures 2 and 3 present ROC curves indicating the rela-
tive classification accuracy of pairwise alignment distances
and proximity within MPSS constructed using classical
scaling or stress majorization, for each annotation type.
Importantly, the plots show that MPSS proximity is never
significantly worse than pairwise alignment distances for
predicting an annotation of common evolutionary origin.
The plots also show that there are significant differences
between structure alignment algorithms. FATCAT and
Dali both take into account flexibility or relative displace-
ment of similar components within structures, while CE
produces a rigid local alignment only. As such, FATCAT
and Dali are superior at detecting the distant or deformed
structural similarities which might convey a functional
relationship and/or shared origin. Furthermore, while raw
CE distances do not perform well, low-dimensional projec-
tion with MDS rescues the classification ability of CE.
Thus, it is shown that while transformation with MDS
does not significantly hamper prediction of annotation, it
in fact greatly improves prediction in some circumstances.

Impact of SMACOF

The data of Figures 2 and 3 permits a direct comparison
between MPSS produced using classical MDS and those
which have been subject to minimization of the stress
between pairwise alignment distances and MDS coordinates



Table 1 Selected annotation terms.

SCOP Superfamilies SCOP Families CATH Superfamilies

Name No. Name No. Name No. Name No. Name No. Name No.
“winged helix” DNA 49 nucleic acid binding 22 transmembrane 17 fibronectin type IIF 17 “winged helix" repressor 49  zinc/RING finger domain, C3HC4 (zinc 17

binding domain¥ proteins* helical fragments* DNA binding domain* finger*
thioredoxin-like¥ 38 EF-hand+ 20 canonical RBD 20 homeodomain* 10 immunoglobins 47 SH3 domains* 16
PH domain-liket 29  transmembrane helical 17 pleckstrin homology 15 globins* 9 P-loop containing 31 EF-hand* 17

fragments* domain (PH nucleoside triphosphate
domain) # hydro\ases*
NTF2-like 26 scorpion toxin-like* 17 SH3 domain* 12 V set domains 12 Glutaredoxin 31 homeodomain-like* 16
(antibody variable
domain-like)

homeodomain-like 30 RNA binding domain 20 ubiquitin-related 11 thioltransferase 9 Rossmann fold* 20 Phosphatidylinositol 3-kinase Catalytic 15

(RBD) * Subunit
P-loop containing 27 omega toxin-like* 16 N-actyl transferase 11 retinol binding 9 nucleic acid binding 20 nuclear transport factor 2* 14

nucleoside triphosphate (NAT* protein-like* proteins*
hydrolases*
ubiquitin-like 24 E set domains 17 spider toxins* " cold shock DNA 13 aldolase class I* 19 Pleckstrin-homology domain (PH 14
binding domain-like* domain)/Phosphotyrosine-binding
domain (PTB)*
immunoglobin 28  S-adenosyl-L-methionine- 16 monodomain 10 lipocalin® 17 globins* 13
dependent cytochrome ¢
methyltransferases
Diverse 92 All 379 Diverse 63 All 186 Diverse 118 All 356
Self-similar 143 Self-simlar 61 Self-similar 145

Diverse and homogeneous groups are selected by inspecting within-group FATCAT distance distributions and taking those groups with the greatest and least mode distances, respectively. Only groups containing
ten or more members were considered. Diverse groups are denoted by * and self-similar groups by #.
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Figure 2 Prediction of SCOP annotations by pairwise distances and MPSS proximity. ROC curves indicate the performance of a classifier.
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contain ROC curves for prediction of membership in SCOP superfamiles and SCOP familes, respectively. Curves are given for each aligner (CE,
Dali, FATCAT), using either raw distances, or proximity within MPSS constructed with either classical MDS or stress majorization. In particular, the
plots demonstrate that MPSS distances are never significantly worse than pairwise alignment distances.
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Figure 3 Prediction of CATH annotations by pairwise distances
and MPSS proximity. As Figure 2, but for CATH homologous

superfamilies ("H").

using SMACOF. In most cases, SMACOF appears to result
in a small improvement in terms of annotation prediction.
However, MPSS built using Dali distances receive a very
large improvement. We postulate that this is most likely
due to the sparseness of the Dali alignment data, which
arises due to Dali’s stringent requirements for a significant
alignment. When stress is minimized, the missing align-
ments (assigned the maximum distance value) cause unre-
lated structures to move apart, while the remaining highly
significant alignments pull groups of related structures
together. Conversely, stress minimization actually decreases
the accuracy of classification using CE-based MPSS. We
hypothesize that the rigid CE distances contain a high
degree of noise. Classical MDS, by discarding eigenvectors
with low signal-to-noise, reduces the impact of this noise
on the MPSS coordinates, but stress minimization then
results in over-fitting as the coordinates are deformed to
match the (noisy) pairwise alignment data. Nevertheless, the
magnitude of this effect is small.

Structural diversity of evolutionarily related proteins

The assignment of a set of proteins to the same SCOP
family, SCOP superfamily or CATH homologous super-
family is based on the inference of a common evolutionary
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Figure 4 Distance distributions of diverse and self-similar annotation groups. Each part displays histograms of FATCAT alignment distance

between members of a group and all other structures (bottom, “vs. PDB25") and between group members only (top, “vs. self’). The left two
groups for each classification level are considered structurally diverse, while the right two are considered structurally self-similar. SCOP

superfamily, SCOP family and CATH superfamily ("H") (Parts (A)-(C) respectively) were selected because they are based on shared function or
evolutionary origin rather than structure alone.
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origin. Such inferences are drawn on the basis of auto-
matic and/or manual inspection of primary, secondary and
tertiary structure. Disregarding any effects of subjectivity
on classification, it is to be expected that different sets of
evolutionarily related proteins will be characterized by
varying levels of structural diversity, due primarily to
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biochemical constraints on the ability of different struc-
tures to provide the same or similar functions. The struc-
tural diversity of any group of proteins may be examined
quantitatively using structural distances from algorithmic
structure alignments. Correct assessment of the relative
structural diversity of a group requires examining both the
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of annotation within diverse groups of the three classification types, using pairwise distances from all three alignment methods and both MDS
methods, and the right column shows ROC curves for prediction of annotation within homogeneous or self-similar groups. While MPSS
proximity is an effective classifier for both diverse and self-similar groups of structures, pairwise distances do not perform well for diverse groups,
regardless of alignment method. MPSS produced using SMACOF are especially successful for diverse groups, but may very slightly over-fit the
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distribution of distances within the group, and that of dis-
tances between group members and all other protein
structures. We visualize these distributions by construct-
ing within-group and global distance histograms for the
three annotations (SCOP family, SCOP superfamily and
CATH homologous superfamily) which convey an evolu-
tionary relationship. The variation of structural diversity
within each type of group is immediately apparent. Groups
with high degrees of structural self-similarity have within-
group distributions which peak relatively near the zero dis-
tance and then fall off as distance increases. In contrast,
structurally diverse groups have within-group distance dis-
tributions which peak far from zero, and are similar to the
distribution of distances between group members and all
other structures. Groups with intermediate levels of struc-
tural diversity have within-group histograms between
these two extremes.

Figure 4 presents histograms showing the distribution of
raw FATCAT distances for diverse and self-similar groups
within each annotation type. FATCAT distances are used
because of the extreme sparseness of the data from Dali
and because of their better predictive capability compared
to CE distance (vide infra). The figure demonstrates that
groups of structures believed to have common evolutionary
origins are characterized by varying structural diversity (as
could be expected) and that groups can be classified as
“diverse” or “self-similar” by inspecting their global and
within-group distance distributions. In particular, we pro-
pose a simple decision function for discriminating between
such groups for the purposes of further analysis. We clas-
sify a group as homogeneous or self-similar if the most
populated histogram bin is at zero, and as diverse if the his-
togram mode is far (greater than 50 FATCAT distance
units) from zero. For the purposes of the present work,
groups of intermediate diversity need not be considered.

Impact of structural diversity on annotation inference

Does the structural diversity of a group of proteins affect
the ability of pairwise alignments or MPSS proximity to
predict group membership? We address this question by
computing independent ROC curves for the most popu-
lated examples of structurally homogeneous and structu-
rally diverse groups (as identified in Table 1). These data
are shown in Figure 5, in which ROC plots for diverse and
self-similar groups belonging to SCOP superfamiles,
SCOP families and CATH superfamilies are presented
side-by-side. Although pairwise alignments and MPSS
proximity can be seen to perform similarly for self-similar
groups (as they do for all groups on average), pairwise
alignments lose much of their predictive ability for annota-
tion of common evolutionary origin when applied to
structurally diverse groups. In contrast, MPSS representa-
tions - especially those computed using SMACOF -
achieve nearly the same, and in some cases higher, levels
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of performance for diverse groups than for homogeneous
ones.

Conclusions

We found that the qualitative shape of a MPSS is highly
dependent on the alignment method used for distance
estimation. Quantitative performance in terms of annota-
tion prediction is also dependent on both alignment and
MDS method. On average among all protein groups, flex-
ible alignment using FATCAT obtains high performance
for both scaling approaches, while the Dali/SMACOF pair-
ing produces the highest overall accuracy. For highly
diverse groups, the best performance is obtaining using
SMACOF, again particularly in combination with Dali.
Furthermore, while both MPSS and pairwise distances
have predictive capability for annotations of shared func-
tion or origin, only MPSS retain this predictive power for
those which are highly structurally diverse.

We are currently developing a publicly available web
server called PSPACE where users can create MPSS by
selecting alignment methods, varying different parameters
and subsequently use the resultant maps to study existing
as well as novel structures.
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