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Abstract

with seven features.

Background: microRNAs are a class of small RNAs, about 20 nt long, which regulate cellular processes in animals
and plants. Identifying microRNAs is one of the most important tasks in gene regulation studies. The main features
used for identifying these tiny molecules are those in hairpin secondary structures of pre-microRNA.

Results: A new classifier is employed to identify precursor microRNAs from both pseudo hairpins and other
non-coding RNAs. This classifier achieves a geometric mean G,,, = 92.20% with just three features and 92.91%

Conclusion: This study shows that linear dimensionality reduction combined with explicit feature mapping, namely
miLDR-EM, achieves high performance in classification of microRNAs from other sequences. Also, explicitly
mapping data onto a high dimensional space could be a useful alternative to kernel-based methods for large
datasets with a small number of features. Moreover, we demonstrate that microRNAs can be accurately identified
by just using three properties that involve minimum free energy.

Background

MicroRNAs are a class of small non-coding RNAs that
play a crucial role in gene regulation by perfectly or
imperfectly binding into three prime untranslated
regions (3' UTR) in messenger RNAs, and cause repres-
sion of translating mRNAs into proteins or their clea-
vage. Researchers have estimated that about one third of
the human genes are regulated by microRNAs [1].
MicroRNAs perform many cellular tasks in cells includ-
ing controlling cell developmental timing, cell death and
stem cell characterization [2]. In addition, many studies
show that malfunction of microRNAs may have devas-
tating impacts on cell life and may cause different types
of cancer, heart disease and nervous system disorder [1].
Accordingly, identification of microRNA genes is an
essential process in discovering microRNA functions
and its role in cellular processes.

* Correspondence: Irueda@uwindsor.ca
School of Computer Science, University of Windsor 401 Sunset Avenue,
Windsor, Ontario, Canada - N9B 3P4

( ) BiolVled Central

Earlier, microRNAs were only identified by using
experimental methods. Traditional experimental
approaches to microRNA discovery include cloning and
sequencing [3], and can detect novel microRNAs. Since
microRNAs usually express at low levels and depend on
tissue and conditions of the cell, these methods may be
unable to identify new microRNAs [1]. Recently high-
throughput sequencing approaches, in particular,
454 sequencing, have become popular for discovering
new microRNAs [4].

Another category of approaches for identifying micro-
RNAs are computational methods. The main idea
behind these methods is to analyze hairpin secondary
structures of precursor microRNAs (pre-microRNA). At
first, non-coding genes are transcribed into primary
microRNAs (pri-microRNA) by RNA Polymerase II [5].
Then, the RNase III enzyme, named Drosha and its co-
factor, Pasha, processes pri-microRNA to release pre-
microRNA, which is about 80 nt long and folds into a
hairpin secondary structure. This product is then ready
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for further processes to change into mature microRNA.
Secondary structure of pre-microRNA allows research-
ers to propose computational methods that can distin-
guish these sequences from other sequences in the
genome.

There are two subcategories for computational meth-
ods: comparative and non-comparative ap-proaches.
Biologists believe that microRNAs are highly conserved
in related genomes [1]. Therefore, some methods use
this property of microRNAs and introduce candidate
microRNAs which fold into hairpin secondary structure
and are conserved in related genomes. The other sub-
category of computational methods includes non-
comparative methods. These methods are mainly based
on analyzing secondary structure of pre-microRNA and
are based on extracted precursor micro RNA features,
to classify them from other sequences. There are still
some major obstacles to overcome. First, there are thou-
sands of other genome sequences which fold into hair-
pin secondary structure, called “pseudo hairpins” [6].
Second, many other non-coding RNAs such as YRNAs,
snRNAs and tRNAs fold into hairpin secondary struc-
ture as well. Therefore, the main challenge is to extract
features from the sequences in such a way that pre-
microRNAs can be distinguished from other non-coding
RNAs and pseudo hairpins to classify them effectively.

Previously, many computational methods were pro-
posed for finding novel microRNAs. The first algorithm
for finding microRNA genes, miRscan [7], is a compara-
tive method that uses a sliding window to compare and
analyze sequences with previously known microRNA
sequences. Later, many other comparative and non-
comparative methods were proposed - we only mention
a few of them here. miRabela [8] uses 40 sequential and
structural features to classify microRNAs. Triplet-SVM
[9] is a support vector machine (SVM) classifier which
uses “contiguous structure-sequence” features to identify
microRNAs. Based on Triplet-SVM, miREncoding SVM
[10] and MiPred [11] were proposed to improve the per-
formance of Triplet-SVM. miREncoding SVM added 11
global features and performed feature selection to find
the best subset of features. MiPred added two thermo-
dynamical features and also replaced the SVM by the
random forest learning algorithm. miPred SVM [12] is
another microRNA identification system that uses
29 “global and intrinsic folding measures” as features.
MicroPred [13] was proposed by Batuwita and Palade
and uses 29 features introduced in miPred in addition
to 19 newly introduced features. MicroPred uses human
pre-microRNAs as the positive class and both genome
pseudo hairpins and other non-coding RNAs as the
negative class for feeding its SVM. The feature selection
method used in [13] is a filter method that does not
consider a classifier for selecting a subset of features.
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Instead, they rely on some discriminant measures before
training the SVM-based classifier. Also, Wang et al. [14]
proposed a feature selection method that is based on
GA-SVM. Lately, Xuan et al. [15] proposed another pre-
microRNA identification method that selects a subset of
samples instead of the whole data set for solving the
class imbalance problem.

On the other hand, linear dimensionality reduction
(LDR) has been shown to be successfully used in pattern
recognition and machine learning [16]. However, LDR
methods may not be very efficient and powerful, espe-
cially when the data is highly complex and non-linear.
For some LDR methods, kernel tricks were proposed to
improve classification performance [17-19]. The kernel
trick aims to implicitly map the data that is not linearly
separable onto higher dimensions hoping that the data
become linearly separable or at least more “separable”
than in the original space. Mapping implicitly is not fea-
sible in all cases due to the complexity of kernelizing
some LDR methods. Instead, the data could be explicitly
mapped onto the target space and then LDR can be
used on the mapped data.

In this paper, LDR combined with mapping the data
onto higher dimensions is employed to classify precur-
sor microRNAs from both pseudo hairpins and other
non-coding RNAs. As discussed later, mapping the data
onto higher dimensions can significantly improve the
performance of the classifiers. In addition, using LDR
can resolve the class imbalance problem since it takes
the distribution of the data into consideration. As
opposed to this, SVM only considers data near the mar-
gin. In addition, a feature selection method is proposed
for selecting a subset of features instead of employing
the whole feature vector, yielding very good results.

Methods

Datasets

The proposed classifier is able to distinguish human
pre-microRNAs from both pseudo hairpins and other
non-coding RNAs. The training dataset includes pre-
microRNA sequences as the positive class and pseudo
hairpins and other non-coding RNA sequences as the
negative class. This dataset is available as stated in [13]
as supplementary material. Detailed information about
the datasets is given below.

Positive dataset

Known human pre-microRNAs: This dataset includes
691 non-redundant human pre-microRNA sequences,
which are obtained from http://microrna.sanger.ac.uk/
sequences/[20,21]. At first, 695 sequences were down-
loaded from miRBase and then after removing redun-
dant sequences, 691 sequences were obtained which
fold into hairpin structures. Some of these sequences
fold into multi-branched loops at default parameters,
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showing sequences with multi-branched secondary
structures that can also be identified by our classifier.
We do not make any assumption about pre-microRNA
secondary structures.

Negative dataset

Pseudo hairpins: The negative dataset is composed of
8,494 human pseudo hairpin sequences which were pre-
viously used in Triplet-SVM, MiPred, miPred and
microPred. These sequences were obtained originally
from RefSeq genes [22].

Other non-coding RNAs: This dataset contains all
the non-coding RNA sequences, except microRNA
sequences to make the classifier able to distinguish
microRNA from other kinds of RNAs. This dataset con-
tains 754 non-redundant sequences which are no longer
than 150 nt. This dataset is known to be the best avail-
able ncRNA dataset for the human genome according
to the authors of [23]. It includes 334 snoRNAs,
327 tRNAs, 53 snRNAs, 32 YRNAs, 5 55-rRNAs, and
three more sequences from other types of RNAs.

Linear dimensionality reduction

Linear dimensionality reduction (LDR) is a well-known
technique in pattern recognition. The basic idea of LDR
is to represent an object of dimension # as a lower-
dimensional vector of dimension d, achieving this by
performing a linear transformation. The advantage of
using a linear transformation is that, although the deri-
vation of the underlying transformation may be slower,
the classification is extremely fast as it performs linear-
time operations to reduce to dimensions, typically,
much lower than the original one.

We consider two classes, w; and w,, which corre-
spond to human pre-microRNAs as the positive class
and pseudo hairpins and other ncRNAs as the negative
class. The classes are represented by two normally dis-
tributed random vectors x; ~ N (m;, S$;) and x, ~ N
(my, S,), respectively, with p; and p, the a priori prob-
abilities. After the LDR is applied, two new random vec-
tors y; = Ax; and y, = Axy, where y; ~ N (Am;; AS;A”)
and y, ~ N (Amy; AS,A") with m; and S; being the
mean vectors and covariance matrices in the original
space, respectively. The aim of LDR is to find a linear
transformation matrix A in such a way that the new
representations of the classes (y; = Ax;) are as separable
as possible. Various criteria have been proposed to mea-
sure this separability [16]. We consider three LDR cri-
teria: the well-known Fisher’s discriminant analysis
(FDA) [24,25], the heteroscedastic discriminant analysis
(HDA) approach [26], and the Chernoff discriminant
analysis (CDA) approach [16]. A brief discussion of
these three follows.

The well-known FDA criterion consists of maximizing
the Mahalanobis distance between the transformed
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distributions by finding a d x n matrix A that maxi-
mizes the following function [24]:

Jroa (A) = tr{(ASwA") " (ASEA")}, (1)

where Sy = p1S1 +p1S; and Sg = (m; - my)(m; - my)t
are the within-class and between-class scatter matrices
respectively. The matrix A that maximizes (1) is
obtained by finding the eigenvalue decomposition of:

Srpa = Sy Sk (2)

and taking the d eigenvectors whose eigenvalues are
the largest ones. The resulting d eigenvectors are the
rows of A.

HDA aims to obtain the matrix A that maximizes the
function:

1 1 1 1
| pilog <s;?sls;2) +p;log (s;,lszs;,z) 1 (3)
Jupa (A) = tr{(ASwA') ' [ASEA'~AS, S2 A}
pip2
The solution to this criterion is given by computing
the eigenvalue decomposition of:

1 1 1 1
| hrlog (sw2 slsmz) +pylog (SWZ sstZ> 1 @)

Supa = S,,'[SE— S& o1b2 SV%],
1

and choosing the d eigenvectors whose corresponding
eigenvalues are the largest ones.

CDA aims to maximize the separability of the distri-
butions in the transformed space, measured by the
Chernoff distance between the two classes. CDA
assumes that the classes are normally distributed (in the
original and transformed spaces), maximizing the fol-
lowing function [16]:

Jeoa () = tr(p1p2ASEA (ASWA') " +log (ASwA) —py log (AS:1A") —ps log (a5:4%)). (5)

In [16], a gradient-based algorithm was proposed,
which maximizes the function of (5) iteratively. LDR is
applied to each input vector and classification is per-
formed via a Bayesian classifier.

Non-linear mapping of linear dimensionality reduction
While LDR methods have been widely used in machine
learning and pattern recognition due to their simplicity,
there are some drawbacks in using linear transforma-
tions, especially when the data are non-linear and com-
plex. Linear classifiers are usually inefficient compared
to more sophisticated classifiers such as SVM.

Kernels have been used extensively in pattern recogni-
tion methods such as SVM, PCA and others. Also, it
has been shown that FDA using kernels significantly
improves the performance of LDR [17-19]. The main
idea of kernel-based methods is to implicitly map input
data to a higher dimension hoping the data become lin-
early separable. For some methods, the kernel trick
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allows one to solve the problem of mapping and classi-
fying without explicitly mapping data to a higher dimen-
sional space. However, this approach is not possible for
LDR methods such as CDA and HDA for which an
implicit solution is far from trivial.

On the other hand, explicit mapping is a good alterna-
tive in some scenarios. The problem that we work on is
that the data are represented in a few dimensions (fea-
tures), and a large number of samples. In fact, if implicit
mapping solutions were available, the size of the kernel
matrices would be in the order of the number of sam-
ples. In our dataset, it would be around 10,000 x 10,000
in which basic algebraic operations on the matrices are
time and space consuming.

Another advantage for using LDR methods is also
related to dealing with a large number of samples in a
lower dimensional space. Even LDR methods are usually
affected by the problem of singular matrices, it is not
the case in our datasets. As a result of doing feature
selection, we deal with a very small number of features,
and even after mapping to a higher dimensional space,
the number of new features does not increase to more
than a hundred (depending on the choice of para-
meters), which is still very low compared to the number
of samples (a few thousand).

Therefore, we propose to explicitly map the data onto
a higher dimensional space and then apply LDR meth-
ods on the mapped data. Explicitly mapping the data
can be a challenging task, since finding the actual map-
ping function @(x) of kernels can be far from trivial,
especially for the radial basis function (RBF) kernel. This
is because RBF implicitly maps the data to an infinite
dimensional Hilbert space. In this study, mapping func-
tions that are extracted from polynomial and RBF ker-
nels are used.

The authors of [27] employed linear SVM on polyno-
mially mapped data in which the dataset is mapped
explicitly. They applied the method on a large scale
where the testing and training processes were very fast
compared to polynomial kernels. The polynomial kernel
has the following form:

K(x,x) = (yx/x; + r)d (6)

where y and r are the parameters, d is the degree of
the polynomial and x € R" The product of two mapping
functions ¢(x;) and ¢(x; ) is the polynomial kernel. By
setting d = 2, r = 1 and ¥ = 1 and simplifying the result,
the mapping function results in:

, xnflxn]t- (7)

¢ (X) = [1,x1,A..,xn,xf,...,xﬁ,xlxz,...

where ¢(x) is of dimension C(n + d, d). For explicit
mapping, we need to use the simplified function to map
the data and apply the LDR method on the new space.
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As mentioned earlier, finding the mapping function of
RBF is not a straightforward task. Rahimi and Recht
[28] proposed a mapping mechanism that maps input
samples to a randomized feature space with low dimen-
sions, in which the inner product of any two mapped
data is equivalent to a Gaussian RBF kernel of the two
input data. Scikit-learn provides a package written in
Python for approximating radial basis function kernel
[29]. The package takes two parameters, m which is
number of dimensions of the transformed features, and
gamma, which is the parameter of the RBF. We use
their package in our implementation.

The features

One of the most important aspects of designing a classi-
fier is to extract the most relevant features which
empower the classifier to distinguish between classes of
data. Therefore, extracting the set of appropriate fea-
tures from the dataset is very momentous. In addition,
since the datasets used in the training and testing pro-
cesses contain multi-branched sequences, the extracted
features should contain relevant information that can
make the classifier able to succeed.

In our study, 48 features are used in which 29 of them
were previously introduced in miPred and 19 features
were proposed in microPred. While we provide here a
brief description about the features, full details can be
found in the supplementary material section of micro-
Pred [13]. These features can be categorized into two
groups: thermodynamical and base pair-related features.
miPred introduced 17 composition features including 16
dinucleotide frequencies and |g + ¢|% ratio, 6 folding
measure features, including modified base pairing pro-
pensity dP, modified minimum free energy (MFE) dG,
modified base paire distance dD, modified Shannon
entropy dQ, and MFE indices 1 and 2 (MFEI, and
MFEI,, respectively).

In addition, microPred introduced another 19 features
including MFE index 3 and 4 (MFEI; and MFEIL,), nor-
malized ensemble free energy (NEFE), MFE structure
frequency (Freq), structural diversity (Diversity) and
Diff = |MFE - EFE|/L, where EFE is the ensemble free
energy and L is the length of the sequence. Also, some
thermodynamical features were introduced, such as
structure entropy dS and dS/L, structure enthalpy dH
and dH/L, melting energy of the structure Tm and Tm/
L. Additionally, a few base-pair-related features such as
|A - U|/L, |G - C|/L,|G - U|/L, average base pairs per
stem, where a stem is a structural motif in the second-
ary structure, and also %|A - U|/nstems, %|G - C|/
nstems, %|G - U|/nstems, where nstem is number of
stems in the secondary structure. All these features
can be calculated and extracted from sequences of
pre-microRNAs.
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The class imbalance problem

The class imbalance problem occurs when there is a
large difference in prior class probabilities or when the
disproportionate numbers of samples in positive and
negative classes lead to poor performance of the classi-
fier with respect to the smallest class [30]. As mentioned
earlier, the number of positive samples in comparison to
the negative samples is small, with a ratio of about 1:13.
In this case, standard classifiers such as SVMs have ten-
dency to classify well the largest class, while ignoring
the smallest class.

In classifiers in which the numbers of samples in dif-
ferent classes are unbalanced, the performance of the
classifier cannot be assessed accurately based on the
percentage of test samples that are correctly classified.
This is because, for example, when the number of sam-
ples in the negative class heavily outnumber the samples
from the positive class and the classifier always classifies
samples as negative, the accuracy is high, although the
classifier is useless. Hence, other indicators are required
for analysis of the classification performance. In [30], it
is suggested that the geometric mean, G,, = </SE x SP,
can be a good indicator, where sensitivity (SE) and spe-
cificity (SP) are defined as follows:

TN
SP = , 8
TN + FP ®
TN
SE = ' ©)
TP + FN

Here, TP represents pre-microRNAs which are cor-
rectly classified as pre-microRNA (true positives), TN
represents non pre-microRNAs (pseudo hairpins and
other ncRNAs) which are correctly classified as non pre-
microRNA (true negatives), FP represents non pre-micro-
RNAs which are misclassified as pre-microRNA (false
positives) and FN represents pre-microRNAs which are
incorrectly classified as non pre-microRNA (false nega-
tives). Using LDR as the classifier is a good strategy to
overcome the class imbalance problem. This is because
LDR methods take the distribution of the whole data into
account, in order to optimize the prediction function.
This is in contrast with the criterion followed by the
SVM that uses only the “support vectors” to find the
most efficient prediction function. Although some SVM
schemes have improved this by incorporating the concept
of soft margin, the SVM still relies on the vectors on (or
next to) the margin, ignoring the contribution of the
other samples to a more efficient classification rule. The
latter feature is, indeed, intrinsic to LDR techniques.

Feature selection
Feature selection is important for a variety of reasons:
increasing the generalization power, speeding up the
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training and testing processes, improving classification
performance, and result comprehensibility [31]. Feature
selection algorithms can be widely categorized into two
groups: filter and wrapper methods. Filter methods eval-
uate the “goodness” of the feature subset by using the
intrinsic characteristics of the data. They are computa-
tionally cheap, since they do not involve the induction
algorithm. However, they also take the risk of selecting
subsets of features, which may not match the chosen
induction algorithm. Wrapper methods, on the contrary,
directly use the induction algorithm to evaluate the fea-
ture subsets. They generally outperform filter methods
in terms of prediction accuracy, but are computationally
more intensive [32]. Brute-force search is a method that
evaluates the performance of the classifier based on dif-
ferent subsets of features. In this method, the perfor-
mance of all possible subsets of features are compared
to each other. In other words, the performance of all
possible two-feature pairs are compared to the perfor-
mance of all possible subsets of three features and so
on. Despite the fact that brute-force search guarantees
the highest accuracy, it is extremely time-consuming
and impractical - brute-force search should find the best
subset of features among the 2" possible subsets, where
n is the number of features. Thus, the search space is
extremely large that it is not possible to run this method
for more than a few features. Another feature selection
method is forward search which is a greedy algorithm to
find a sub-optimal subset of features [33]. This algo-
rithm starts with the null set and selects features to be
added to the set one at a time, based on the perfor-
mance of the classifier with the currently selected fea-
tures in addition to a potential selected feature. This
algorithm is very fast and usually has an acceptable per-
formance, but does not guarantee the best subset of
features.

In this study, we introduce a systematic feature selec-
tion method that is based on floating forward search
feature selection and aims to improve the performance
of the basic algorithm. The improvement relies on
searching a larger feature space compared to the basic
forward search approach. In our approach, the best 10
pairs of features among all the pairs (2-tuples) of fea-
tures are selected. Then, all combinations of pairs with
a third feature are evaluated and the best 10 triplets
(3-tuples) of features are selected. This procedure is
continued with k-tuples, k = 4, 5, . . . until a criterion is
satisfied. The criterion can be a certain number of fea-
tures being selected or selecting a new feature that does
not improve the performance significantly. In our
approach, the feature selection process is continued
until 12 features are evaluated.

As mentioned earlier, since our dataset is unbalanced,
G, is used to measure the performance of the classifiers
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to ensure that class imbalance does not mislead feature
selection algorithms to select the best subset of features,
regardless of different proportions between the number
of samples in each class. Combining feature selection
with explicit mapping followed by LDR and Bayesian
classification yields the prediction model proposed in
this paper - we call it miLDR-EM.

Results and discussion

In this study different experiments have been conducted
on the dataset described in the Methods section. In
order to evaluate the performance of the classifiers and
feature selection mechanisms, 10-fold cross validation is
used. The partitioning is done in such a way that the
ratio between the number of samples in the positive
class and the number of samples in the negative class
remain the same. At each stage, one of these groups is
selected as the test set and the other nine subsets are
used as the training set. In this method, no sample from
the test set is used in the training process and only the
test set can be used for evaluating the performance of
the classifier.

In the first experiment, the mapping is applied to the
dataset with pairs of features, using the polynomial and
RBF mapping functions. Then, it is compared to the
performance of the miLDR-EM classifier with the best
subset of features in the dataset. Table 1 shows a com-
parison between LDR-based classifiers with different
methods for explicit data mapping. The first row shows
the results of LDR without any mapping at all. As men-
tioned in the Methods section, there are different com-
binations of LDR criteria (FDA, HDA and CDA) and
two classification mechanisms (linear and quadratic).
Here, only the best results of these six combinations are
shown in Table 1. As we can see, the classifier that
achieved the best performance when the data consists of
explicitly mapping onto higher dimensions using the
RBF mapping function employing HDA coupled with a
quadratic classifier.

In order to evaluate the feature selection method, a
comparison between the performance of the proposed
system using the whole dataset versus a subset of fea-
tures was performed. The aim is to select a subset of
features and measure the goodness of that subset using
a particular classifier. If mapping the data is required, all

Table 1 Comparison of different mapping functions for
LDR-based methods.

Mapping Method SE SP G,
No mapping 69.17% 98.94% 82.72%
Polynomial 76.99% 96.98% 86.41%
RBF 85.23% 92.90% 88.99%
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the samples with the selected features will be mapped to
the target high dimensional space. Then, using 10-fold
cross validation, the data is partitioned into ten subsets
and the LDR-based classifier will evaluate the perfor-
mance of the system. At this stage, all the intermediate
results are stored in a database to be used for next
round of feature selection.

Table 2 compares the results of the feature selection
method with explicitly mapped data for different num-
bers of features. The mapping function that has been
used in this experiment is RBF with default parameters,
Y =15 and m = n + 15, where m is the number of
dimensions we map the data and # is the number of fea-
tures in the feature subset. The classifier performs very
well with just three features yielding G,, = 91.32%. Also,
it achieves G,, = 91.58% with seven features. Figure 1
depicts a plot of the performance values for SE, SP and
G, and helps clearly visualize the trends of these mea-
sures for different numbers of features. The plot shows
how the performance, measured by G,,, shows two peaks
at 3 and 7, and stays steady for other numbers of
features.

Furthermore, in order to optimize the parameters of
the RBF mapping, a grid search was performed. The
values that were used for y are [0.25, 0.5, 1, 2, 4, 8], and
for nComponents are [10,15,20,25,30] for three features
and [15, 20, 25, 30, 35] for seven features. Figures 3 and
4 show heatmaps containing G,, values for all possible
values of v and nComponents, for three and seven fea-
tures respectively. For three features, the values of G,,
are spread on a larger range from 87.74 to 92.20 (the
maximum). Although there are small values in the plots
(most of them for nComponents = 10), most of the
values are reasonable large, with quite a few of them
near the maximum. This demonstrates the flexibility of
miLDR-EM for a wide range of parameters. A similar
case is also observed for seven features. The heatmap

Table 2 Results for feature selection.

No. of Features SE SP Gm
2 84.67% 95.43% 89.89%
3 85.53% 97.51% 91.32%
4 85.82% 93.59% 89.62%
5 84.23% 96.16% 90.00%
6 83.94% 97.13% 90.29%
7 86.54% 96.91% 91.58%
8 90.59% 91.24% 90.92%
9 86.83% 92.68% 89.71%
10 87.12% 93.18% 90.10%
1 87.84% 92.90% 90.33%
12 88.32% 92.10% 90.19%

A comparison between mapping functions, polynomial and RBF, when using
LDR on different pairs of features.

Performance of feature selection with miLDR-EM for different numbers of
features. The three measures of performance are SE, SP and G,,.
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Figure 1 Performance for different subsets of features. Performance of miLDR-EM when using different subsets of features with RBF
mapping. The x-axis represents the size of the feature subset, while the y-axis corresponds to the performance values for the three measures, SE,

SP and G,,, achieved by milLDR-EM with RBF mapping.
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looks different because the color map is on a smaller
range. The heatmap has been plotted in this way in
order to visualize the largest values (G,, > 92.73) in red,
and make the distinction with the smaller values,
which otherwise will not be too different from larger
ones. As in three features, the smaller values are for

nComponents = 15. Also, there are many cases with
large values, again, showing the flexibility of miLDR-EM
for a wide range of values for nComponents. Overall,
miLDR-EM is more flexible for seven than for three fea-
tures. This is reasonable as using only three features
involves a much smaller number of possible subsets,
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Figure 2 Results for different methods. Performance comparison of previously proposed methods against miLDR-EM. The x-axis represents
each method for the three different measures, SE, SP and G,,, while the y-axis corresponds to the values achieved for the three measures.
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Figure 3 Plot of parameter optimization for three features. Heatmap containing G, values for different values used for y (x-axis) and
nComponents (y-axis) in the parameter optimization phase for three features. The colors range from dark blue (lowest value) to dark red (largest

values). The largest value, G, = 92.20, is highlighted in bold. Some values are shown in white just to enhance visualization.
- J

whereas for seven features the number of possible sub-  obtaining higher classification performance, even by
sets is much larger. Although the feature selection widening the range of parameter values.

mechanism does not exhaustively search all possible In Table 3, the optimized parameters and correspond-
subsets for seven features, it selects those among the ing performances are shown. As it is clear from the table,
best ones for classification, yielding more chances of  with three features, the classifier achieved G,, = 92.20%

.
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Figure 4 Plot of parameter optimization for seven features. Plot for the parameter optimization phase for seven features. The heatmap plots
the values of Gm for different values of y (x-axis) and nComponents (y-axis). In bold is the largest value of G,,. Some numbers are shown in white
just to enhance visualization.
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Table 3 Results for optimized parameters.

No. of Features Gamma m SE SP Gm Std.
3 400 25 8813% 9645% 92.20% +0.068
7 0.50 20 89.15% 96.84% 9291% +0.056

Optimized parameters for RBF mapping when using three and seven features.
The last column represents the standard deviation of the G, values for the
ten folds.

and with seven features G,, = 92.91%. The standard
deviations for both cases are very low, considering that
the cross validation is ten-fold and the number of fea-
tures is small. The performance of the classifier with
three features is very good, considering that the classifier
uses a very small number of features. As mentioned in
the Methods section, using fewer features reduces the
complexity of the system and gives an opportunity for
the researchers to understand the relation between the
features from a biological perspective. Therefore, it is
remarkable that although seven features yields slightly
better performance, using three features for classification
is justifiable with G,,, = 92.20%.

Comparison with other methods
We compared LDR coupled with RBF mapping, which
yields the highest performance when using three features,
with some of the previously proposed methods as follows:
miRabela [8], miPred [12], MiPred [11], microPred [13],
and Triplet-SVM [9]. The result of the comparison is
presented in Table 4. The plot of the performance values
are more clearly visualized in Figure 2, in which the
x-axis corresponds to the methods, and the bars repre-
sent the three measures of performance, SE, SP and G,,,.
The results included in Table 4 correspond to those
reported in [13], since that paper shows the geometric
mean as a comparison, while the others focus on accu-
racy. For the reasons discussed earlier in this paper,
classification accuracy is expected to be much higher
than G,,, at the expense of misclassifying most samples
in the smallest class, if not all of them. Triplet-SVM

Table 4 Comparison with other methods.

Method Ref. Feat. SE SP G,

Triplet-SYM [9] 32 93.30% 88.10% 90.66%
miRabela [8] 40 71.00% 97.00% 82.99%
miPred [12] 34 89.35% 93.21% 91.26%
miPred [12] 29 84.55% 97.97% 91.01%
microPred [13] 21 90.02% 98.28% 93.58%
miLDR-EM - 3 88.13% 96.45% 92.20%
miLDR-EM - 7 89.15% 96.84% 92.91%

Performance comparison of miLDR-EM with previously proposed methods.
The first column contains the name of the method being compared, the
second column contains the number of features being used by that method,
and the subsequent columns represent SE, SP and G, respectively. For all
previous methods, the results in the table are those reported in [13].
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used a complete dataset of 193 positive and 8,494 nega-
tive samples. Of these, several samples were taken ran-
domly (without replacement) to create non-overlapping
training and test sets, containing 163 positive and 168
negative, and 30 positive and 1,000 negative samples
respectively. From these numbers, it is obvious that the
classifier will not face the imbalance problem on the
training data. However, randomly picking samples from
the complete dataset could produce a biased classifier
toward some particular distribution (as no cross-valida-
tion is used). The same datasets were also used for test-
ing miPred and microPred, but with different numbers
of features (as indicated in the table). In addition, as
pointed out in [13], no clear details were given in [8] on
how the training and test sets were obtained. The per-
formance of that method is very low though, and it uses
40 features. microPred used the same dataset as that of
our experiments, with a 5-fold cross-validation process
and a separate dataset of randomly chosen samples for
test purposes.

Although the performance of miLDR-EM is slightly
lower than that of microPred, miLDR-EM uses only
three features and performs very well compared to
microPred, which uses 21 features and achieves a G,
value of just 1.38% higher than miLDR-EM. Even better
performance is achieved by miLDR-EM with seven fea-
tures, 0.67% lower than that of microPred with 21 fea-
tures. The other advantage that miLDR-EM shows with
respect to other methods is that the difference between
SE and SP is much smaller, showing the power of the
proposed scheme for solving the class imbalance pro-
blem. Only miPred and Triplet-SVM achieve a better
balance between SE and SP, but yield a smaller G,,, and
use a much larger subset of features, 34 and 32 respec-
tively. Although microPred and miLDR-EM achieve a
similar balance between SE and SP, miLDR-EM uses
fewer features. In addition, the plot of Figure 1 reveals
that selecting eight features does not lower the perfor-
mance substantially and keeps an almost perfect balance
between SE and SP.

Overall, due to the small difference between the two
methods, we can assert that miLDR-EM is the best
choice, since it can achieve comparable results with a
much smaller subset of features, yields a smaller differ-
ence between SE and SP, and can also provide an addi-
tional biological insight (discussions at the end of this
section). This may provide not only an improvement on
the computational task for classification, but also a
more meaningful insight on the RNA structural proper-
ties that are suitable for prediction of pre-microRNA
and pseudo hairpins. Note that we have tested miLDR-
EM with one and two features, and the performance
lowers to a G,,, value under 90%. For this reason, select-
ing three features is the best choice.



Shakiba and Rueda BMC Proceedings 2013, 7(Suppl 7):58
http://www.biomedcentral.com/1753-6561/7/57/S8

To conclude this section, a discussion on the selected
features is presented. The three features that miLDR-
EM uses for classification are the following: dG, zG and
NEFE. dG represents the normalized free energy of fold-
ing in the sequences, normalized by the length of the
sequence. zG is the normalized variant (z-score) for fea-
ture dG. NEFE measures the normalized ensemble free
energy of the sequence. As dG, NEFE is also normalized
by the length of the sequence. In a nutshell, it can be
inferred that the identification of microRNA is merely
based on minimum free energy (and its normalized z-
score), and the normalized ensemble free energy. The
other 45 features are much less relevant or not relevant
at all in the prediction problem, and could eventually be
disregarded.

Conclusion

We have proposed a classification approach for identify-
ing microRNA sequences and classifying pre-micro-
RNAs from pseudo hairpins and other non-coding
RNAs, which we call miLDR-EM. We have used linear
dimensionality reduction (LDR) as the main classifica-
tion engine. The proposed approach explicitly maps the
data onto a higher dimensional space and classification
takes place on the mapped data. While using different
functions for mapping the data, the results show that
RBF helps the classifier perform better. Also, a feature
selection method is applied on the dataset in order to
find a subset of relevant features. The results turn out
to be very good compared to previously proposed meth-
ods. With only three features, miLDR-EM performs
slightly lower than microPred which uses 21 features.
Explicitly mapping the data onto a higher dimensional
shows significant improvement in performance. This
study shows that in cases in which the number of sam-
ples is very large, explicit mapping can be used instead
of kernel-based methods. In addition, we propose a spe-
cialized feature selection method in which we keep a
balance between exhaustive search and greedy search
for finding a significantly smaller subset of features.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally to this work.

Acknowledgements

This work has been partially supported by NSERC, the Natural Science and
Engineering Council of Canada. This work has also been made possible by
the facilities of the Shared Hierarchical Academic Research Computing
Network (SHARCNET:http://www.sharcnet.ca) and Compute/Calcul Canada.

Declarations
The publication costs for this article were funded by the Natural Sciences
and Engineering Council of Canada, NSERC.

Page 10 of 11

This article has been published as part of BMC Proceedings Volume 7
Supplement 7, 2013: Proceedings of the Great Lakes Bioinformatics
Conference 2013. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcproc/supplements/7/S7.

Published: 20 December 2013

References

1. Bartel DP: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function.
Cell 2004, 116(2):281-297.

2. Gai Y, YuX HuS, Yu J: A Brief Review on the Mechanisms of miRNA
Regulation. Genomics, Proteomics & Bioinformatics 2009, 7(4):147-154.

3. Chen K, Rajewsky N: The evolution of gene regulation by transcription
factors and microRNAs. Nat Rev Genet 2007, 8(2):93-103.

4. Esquela-Kerscher A, Slack FJ: The age of high-throughput microRNA
profiling. Nat Methods 2004, 1(2):106-107.

5. Esquela KA, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev
Cancer 2006, 6(4):259-269.

6.  Bentwich |, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A,
Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z: Identification of
hundreds of conserved and nonconserved human microRNAs. Nat Genet
2005, 37(7):766-770.

7. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP: Vertebrate MicroRNA
Genes. Science 2003, 299(5612):1540-1540.

8. Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein M, Tuschl T, van
Nimwegen E, Zavolan M: Identification of clustered microRNAs using an
ab initio prediction method. BMC Bioinformatics 2005, 6:267.

9. Xue G, Li F, He T, Liu GP, Li Y, Zhang X: Classification of real and pseudo
microRNA precursors using local structure-sequence features and
support vector machine. BMC Bioinformatics 2005, 6:310.

10.  Dalkilic M, Kim S, Yang J, Zheng Y, Hsu W, Lee M, Wong L: In Exploring
Essential Attributes for Detecting MicroRNA Precursors from Background
Sequences. Volume 4316. Springer Berlin/Heidelberg; 2006:131-145.

11. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z: MiPred: classification of real
and pseudo microRNA precursors using random forest prediction model
with combined features. Nucleic Acids Research 2007, 35(suppl 2):
W339-W344.

12. Ng KLS, Mishra SK: De novo SVM classification of precursor microRNAs
from genomic pseudo hairpins using global and intrinsic folding
measures. Bioinformatics 2007, 23(11):1321-1330.

13. Batuwita R, Palade V: microPred: effective classification of pre-miRNAs for
human miRNA gene prediction. Bioinformatics 2009, 25(8):989-995.

14. Wang Y, Chen X, Jiang W, Li L, Li W, Yang L, Liao M, Lian B, Lv Y, Wang S,
Wang S, Li X: Predicting human microRNA precursors based on an
optimized feature subset generated by GA-SVM. Genomics 2011,
98(2):73-78.

15. Xuan P, Guo MZ, Wang J, Wang CY, Liu XY, Liu Y: Genetic algorithm-based
efficient feature selection for classification of pre-miRNAs. Genetics and
molecular research 2011, 10(2):588-603.

16. Rueda L, Herrera M: Linear Dimensionality Reduction by Maximizing the
Chernoff Distance in the Transformed Space. Pattern Recognition 2008,
41(10):3138-3152.

17. Mika S, Rétsch G, Muller KR: A Mathematical Programming Approach to
The Kernel Fisher Algorithm. Proc Neural Information Processing Systems
MIT Press; 2001, 591-597.

18. Mika S, Ratsch G, Weston J, Scholkopf B, Mullers K: Fisher discriminant
analysis with kernels. Neural Networks for Signal Processing X, 1999 1999,
41-48.

19. Kim SJ, Magnani A, Boyd S: Optimal kernel selection in Kernel Fisher
discriminant analysis. Proceedings of the 23rd international conference on
Machine learning ACM; 2006, 465-472.

20.  Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ:
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic
Acids Res 2006, 34(Database issue):.D140-D144.

21, Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for
microRNA genomics. Nucleic Acids Research 2008, 36(suppl 1):D154-D158.

22, Pruitt KD, Maglott DR: RefSeq and LocusLink: NCBI gene-centered
resources. Nucleic Acids Research 2001, 29:137-140.

23.  Griffiths-Jones S: The microRNA Registry. Nucleic Acids Research 2004,
32(suppl 1)D109-D111.


http://www.sharcnet.ca
http://www.biomedcentral.com/bmcproc/supplements/7/S7
http://www.ncbi.nlm.nih.gov/pubmed/14744438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20172487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20172487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17230196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17230196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15782171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15782171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16557279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15965474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15965474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12624257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12624257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16274478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16274478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17553836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17553836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17553836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17267435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17267435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17267435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19233894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19233894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21586321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21586321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21491369?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21491369?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17991681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17991681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681370?dopt=Abstract

Shakiba and Rueda BMC Proceedings 2013, 7(Suppl 7):58
http://www.biomedcentral.com/1753-6561/7/57/S8

24.

25.

26.

27.

28.

29.

30.

31

32.

33

Duda R, Hart P, Stork D: Pattern Classification. 2nd edition. New York, NY:
John Wiley and Sons, Inc; 2000.

Fisher R: The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics 1936, 7:179-188.

Loog M, Duin P: Linear Dimensionality Reduction via a Heteroscedastic
Extension of LDA: The Chernoff Criterion. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2004, 26(6):732-739.

Chang YW, Hsieh CJ, Chang KW, Ringgaard M, Lin CJ: Training and Testing
Low-degree Polynomial Data Mappings via Linear SVM. Journal of
Machine Learning Research 2010, 11:1471-1490.

Rahimi A, Recht B: Random Features for Large-Scale Kernel Machines. In
Advances in Neural Information Processing Systems 20. MIT Press;Platt J, Koller
D, Singer Y, Roweis S 2008:1177-1184.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M, Duchesnay E: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 2011,
12:2825-2830.

Akbani R, Kwek S, Japkowicz N: Applying Support Vector Machines to
Imbalanced Datasets. In Machine Learning: ECML 2004, Volume 3201 of
Lecture Notes in Computer Science. Springer,Boulicaut JF, Esposito F,
Giannotti F, Pedreschi D 2004:39-50.

Zhu Z, Ong YS, Dash M: Wrapper-Filter Feature Selection Algorithm Using
a Memetic Framework. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on Feb 2007 37:70-76.

Guyon |, Elisseeff A: An introduction to variable and feature selection.

J Mach Learn Res 2003, 3:1157-1182.

Theodoridis S, Koutroumbas K: Pattern Recognition. third edition. Elsevier
Academic Press; 2006.

doi:10.1186/1753-6561-7-S7-S8

Cite this article as: Shakiba and Rueda: MicroRNA identification using
linear dimensionality reduction with explicit feature mapping. BMC
Proceedings 2013 7(Suppl 7):S8.

Page 11 of 11

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/18579934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18579934?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Datasets
	Positive dataset
	Negative dataset

	Linear dimensionality reduction
	Non-linear mapping of linear dimensionality reduction
	The features
	The class imbalance problem
	Feature selection

	Results and discussion
	Comparison with other methods

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

