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Abstract

blood pressure over time.

Groups of genes assigned to a pathway, also called a module, have similar functions. Finding such modules, and
the topology of the changes of the modules over time, is a fundamental problem in understanding the
mechanisms of complex diseases. Here we investigated an approach that categorized variants into rare or
common and used a hierarchical model to jointly estimate the group effects of the variants in a pathway for
identifying enriched pathways over time using whole genome sequencing data and blood pressure data. Our
results suggest that the method can identify potentially biologically meaningful genes in modules associated with

Background

It has long been recognized that genetic analysis of longi-
tudinal phenotypic data is important for understanding
the genetic architecture and biological variations of com-
plex diseases. The analysis can help identify the stage of
disease development at which specific genetic variants play
a role. However, the statistical methods to analyze longitu-
dinal genetic data are limited. A commonly used approach
is to analyze the longitudinal genetic traits by averaging
multiple response measurements obtained at different
time points from the same individual. This approach may
miss a lot of useful information related to the variability of
repeated genetic traits, although it is simple and computa-
tionally less expensive. Linear mixed models have also
been used for repeated measures data [1].

Recently, there has been a shift to testing rare variants,
mostly using next-generation sequence technologies, for
association with complex diseases. We explored dynamic
pathway-based analysis of genes associated with blood
pressure over time using whole genome sequencing data.
We first performed gene-based association analysis at
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each of the 3 time points by stratifying the variants into
rare and common. Then we performed pathway enrich-
ment analysis separately at each time point. Finally, we
built pathway crosstalk network maps using the enriched
pathways to identify potential subnetworks associated
with blood pressure over time.

Methods

Data description

For genotype data, we analyzed sequencing data of the 142
unrelated individuals on chromosome 3, which includes
1,215,120 variants. For phenotype data, we analyzed the
simulated phenotypes of replicate 1. We analyzed 2 quan-
titative traits: systolic blood pressure (SBP) and Q1. SBP
was measured at 3 time points (T1, T2, and T3), and was
close to normally distributed (data not shown) after treat-
ment effect adjustment (see below). There are 31 func-
tional loci (genes) on chromosome 3 that influence the
simulated SBP. Q1 was simulated as a normally distributed
phenotype but not influenced by any of the genotyped
single-nucleotide polymorphisms. It also has no correla-
tion with SBP measured at T1, T2, and T3. The Pearson
correlation of SBP at the 3 time points with Q1 based on
the 142 unrelated individuals is -0.09 (p value = 0.27),
-0.02 (p value = 0.78), and -0.006 (p value = 0.94),
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respectively. Q1 was generated primarily to facilitate
assessment of type 1 error.

Adjust treatment effects

It has been shown that the association between measured
blood pressure and underlying genotype is potentially
confounded by antihypertensive treatment [2]. Following
Cui et al [3], we adjusted SBP of subjects receiving anti-
hypertensive medications by adding a constant value of
10 mm Hg at the 3 study exams (n = 22, 51, and 73;
15.5%, 35.9%, and 51.4%, respectively). Such a strategy
had higher power than the alternatives [2].

Analyze common and rare genetic variants using
hierarchical models

We applied an extended hierarchical generalized linear
model [4] to simultaneously analyze rare and common
variants at the gene level. The model can be summar-
ized as follows: Assume that the observed values of a
given quantitative trait (SBP or Q1) are denoted as
¥y = (y1,--- ,¥n) and the predictor variables, that are var-
iants, can be categorized into 2 groups: rare (minor
allele frequency <1%) and common variants (minor
allele frequency 21%). The number of variants in the
rare and common groups are J; and J,, respectively. The
extended hierarchical generalized linear model to fit the
rare and common variants in a given gene can be
expressed as a multiplicative form for the linear predic-
tor 1 of individual i:

2 Jie
ni=Po+ Y &Y B
k=1 jeGy

where Zij is the predictor of main-effect for individual i
at genetic variant j in group Gy, equaling to the number of

minor alleles for an additive coding and Z; = (z1, ..., zjj),
2

where ] = Z Ji is the total number of variants. 8k repre-
k=1
sents the group effect for J;, variants in group Gr. B is a
vector of all the coefficients and the intercept S.
The mean of ) is related to the linear predictor 1 via a
link function #:

E(yilZi) = h='(ZiB)

The  data  distribution is  expressed as

n
p(y|1ZB,0) = l_[ p(yilZiB,0), where 0 is a dispersion para-

i=1
meter, and the distribution p(y;|Z; 8, 0) takes normal distri-
bution. Because there are many highly correlated variants in
a given gene in next-generation sequencing studies, a hier-
archical framework is constructed for priors of the distribu-
tions of coefficients (g and f) in the model. The method
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was implemented in R package BAGLM (http://www.ssg.
uab.edu/bhglm/).

We assigned the genetic variants to a gene if they
were in the gene or within 10 kilobases (kb) of either
side of the gene. We performed 2 analyses to evaluate
the association between genotype and SBP at each study
exam separately. First, we divided the variants within a
gene into rare (k = 1) and common variants (k = 2).
Separately we analyzed all the genetic variants in a
gene, irrespective of allele frequency. Our main objec-
tive was to estimate gene effects 8 and to test the
hypothesis g, = 0, k = 1 (rare variants) and k = 2 (com-
mon variants) for the first analysis and k = 1 (rare and
common variants) for the second analysis. We corrected
for multiple testing using the Benjamini and Hochberg
method [5].

Dynamic pathway analysis

We mapped the approximately 1200 genes on chromo-
some 3 to the c2 curated pathways (version 3) from the
Broad Institute (http://www.broadinstitute.org/gsea/
msigdb/), which includes 2934 gene sets collected from
186 Kyoto Encyclopedia of Genes and Genomes (http://
www.genome.jp/kegg/), 430 Reactome, 217 BioCarta
pathways, 880 canonical pathways, 825 biological pro-
cess, and 396 molecular function gene ontology terms.
We kept only the pathways with at least 5 genes in our
data set, which left 531 pathways for analysis.

There are different ways to test for genes associated
with an excess of SBP in the same pathway. We used the
“gene set enrichment test” implemented in the limma R
package [6]. The approach uses the Wilcoxon signed
rank test to compute a p value to test the hypothesis that
a given gene set tends to be more highly ranked than
would be expected by chance. The ranking is based on a
t-like test statistic, and here we used the z statistics from
the hierarchical model described in above Section (Ana-
lyze common and rare genetic variants using hierarchical
models). The test is essentially a streamlined version of
the gene set enrichment analysis approach introduced by
Subramanian et al [7].

We performed dynamic pathway crosstalk analysis
between each pair of time points using the enriched
pathways with a nominal p value of <0.05. Two path-
ways were considered to crosstalk if they shared at least
1 functional locus (gene). This ensures that each of
pathway and its crosstalk has biological meaningfulness.
We built pathway crosstalk subnetworks using Cytos-
cape (http://www.cytoscape.org/).

Results

Given a false discovery rate (FDR) of 0.05 at the gene-level
analysis, we identified 116, 57, 2, and 0 significant genes
for SBP measured at T1, T2, T3, and Q1, respectively,
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using rare variants. However, there were no significant
genes for SBP measured at the 3 time points and Q1 using
common variants. Of those significant genes from the rare
variant analysis, 4, 1, 0, and 0 were true positives (Table 1)
for SBP measured at T1, T2, T3, and Q1, respectively. We
observed that these 4 genes had significant positive asso-
ciations with SBP (Table 1). For the gene-level analysis
irrespective of allele frequency we identified many signifi-
cant genes (468, 415, 306, and 214 for SBP measured at
T1, T2, T3, and Ql, respectively) (Table 2). However, the
vast majority of them were false positives (see false-posi-
tive rate analysis below), implying that, irrespective of
allele frequency, the analysis strategy had a grossly inflated
type I error, possibly as a result of linkage disequilibrium
between variants. We calculated the false-positive rate and
false-negative rare for T1, T2, T3, and Q1 using the 2 ana-
lysis approaches. We defined the positive as those genes
that had an adjusted p value smaller than 0.05, and the
negative as those genes that had an adjusted p value larger
than or equal to 0.05. As shown in Table 2, irrespective of
allele frequency, the analysis approach had many false
positives compared with the approach that stratified by
allele frequency. The genes based on common variants
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used in the first analysis had no power to detect the
genetic association between genotypes and SBP.

To further evaluate the whole-spectrum of power of
the approaches to identify causal genes, we drew the
receiver operating characteristic curves for each type of
strategy at each time point and estimated its area under
the curve. We found that each analysis strategy has dif-
ferent power to identify causal genes at different time
points. Overall, the analysis based on rare variants had
the largest power at T3, which also had larger power to
detect disease-causing genes than common variants at T2.

Using the z statistic obtained from modeling rare var-
iants in a gene, we did not find significant pathways
associated with SBP at FDR of 0.05 level based on gene
set enrichment analysis. However, given a nominal
p value cutoff of 0.05, we identified the same 3 enriched
pathways for SBP measured at 3 time points but not for
Q1 (Table 3). Each of these 3 pathways included 1
“functional” gene (FLNB), which had 286 rare variants
with 1 functional variant (chr3: 58109162, explained
0.00273 of the variance for SBP).

To identify pathway crosstalk, we built 2 pathway sub-
networks (Figure 1) for the pathways with nominal

Table 1 Significant association of causal genes with rare variants with SBP at T1 and T2 based on chromosome 3

gene-based tests

Time period and gene Rare variants

Common variants

Estimate SE z Value Adjusted p value Estimate SE z Value Adjusted p value
T ABTBI1 0.71 0.24 3.01 0.0321 -0.15 0.21 -0.70 0.99

SCAP 0.87 022 4.00 0.0058 -0.02 0.08 -0.27 099

PROK2 3.30 0.90 3.66 0.011 -0.19 0.21 -093 0.99

MUCI13 0.65 0.22 296 0.035 0.00 0.08 0.02 1.0

T2 SCAP 1.06 0.27 3.89 0.0076 -0.08 0.08 -1.00 0.95
Note: There were no significant associations for causal genes including only either rare or common variants at T3 (or for Q1).
Table 2 False-positive rate (FPR) and false-negative rate (FNR) of gene-based analyses
Time period or trait Gene-based stratified by allele frequency Gene based
Rare variants Common variants Rare and common variants
FPR (%) FNR (%) FPR (%) FNR (%) FPR (%) FNR (%)
T 9.6 86.7 0.0 100.0 39.2 533
T2 48 96.7 0.0 100.0 349 63.3
T3 02 1000 0.0 1000 256 66.7
Q1 0.0 1000 0.0 1000 17.8 76.7
Table 3 Enriched pathways found in T1, T2, and T3
Pathway names No. of No. of genes on chr. No. of functional p Value of p Value of p Value of
genes 3 loci T1 T2 T3

Actin filament-based process 114 10 1 0.021 0016 0018
Actin cytoskeleton organization and 104 10 1 0.021 0.016 0.018
biogenesis
Cytoskeleton organization and biogenesis 205 12 1 0.030 0.013 0.022
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Figure 1 Dynamic pathway crosstalk: (A) T1 and T2; (B) T2 and T3. Pathways with blue, red and yellow are enriched at T1, T2, and T3,
respectively. Pathways with green are enriched at both T1 and T2 (A) and at both T2 and T3 (B). A single line between 2 pathways indicates
that each of the 2 pathways is enriched in only 1 of the 2 time points; a double-line between 2 pathways indicates that both pathways are
enriched in both T1 and T2 (A) and in both T2 and T3 (B).
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p value smaller than 0.05. Two pathways crosstalk if at 2
time points they included at least 1 common true gene.
As shown in Figure 1, we found that there was a sub-
network formed by the “actin filament based process,”
the “actin cytoskeleton organization and biogenesis,”
and the “cytoskeleton organization and biogenesis and
organelle organization and biogenesis” pathways that
were consistently enriched across adjacent time periods
(T1 —» T2 and T2 — T3).

Discussion

In this study, we evaluated the associations between rare
and common genetic variants and the simulated quanti-
tative trait (SBP) measured at 3 time points at the gene
and pathway levels. We found that joint modeling all the
variants (rare and common) together had a high type I
error, which may be a result of linkage disequilibrium
between common and rare variants, or the average effect
between rare and common variants. However, a strategy
that categorized variants into rare or common and used a
hierarchical model to jointly estimate the group effects
showed rare variants had higher power to detect func-
tional loci than did common variants. Although we did
not find statistically significant pathways associated with
SBP (FDR of the 0.05 level), we showed some enriched
pathways shared across time at a nominal p value cutoff
of 0.05. Interestingly, we also found a subnetwork with 3
enriched pathways that showed crosstalk between each
pair of time points, suggesting the dynamic pathway
crosstalk may have a key role in the pathogenesis of SBP.
It should be noted the “functional” loci defined in simu-
lation answers provided by Genetic Analysis Workshop
18 (GAW18) organizers were polymorphic based on all
individuals, but they may be not polymorphic in the
unrelated individuals analyzed in this study. In this case,
some functional loci (or genes) may not have effects in
the unrelated data, which may lead to the bias in calcula-
tion of false negatives.

Conclusions

In summary, we proposed a framework to identify
dynamic pathways which have the potential in regulating
SBP via analyzing repeated traits with next-generating
sequencing. This can generate insights into the progres-
sive mechanisms of the underlying disease. This analysis
strategy can also be applied to examine the mechanisms
that drive the progression of complex diseases.
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