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Abstract

Testing rare variants directly is possible with next-generation sequencing technology. In this article, we propose a
sliding-window-based optimal-weighted approach to test for the effects of both rare and common variants across
the whole genome. We measured the genetic association between a disease and a combination of variants of a
single-nucleotide polymorphism window using the newly developed tests TOW and VW-TOW and performed a
sliding-window technique to detect disease-susceptible windows. By applying the new approach to unrelated
individuals of Genetic Analysis Workshop 18 on replicate 1 chromosome 3, we detected 3 highly susceptible
windows across chromosome 3 for diastolic blood pressure and identified 10 of 48,176 windows as the most
promising for both diastolic and systolic blood pressure. Seven of 9 top variants influencing diastolic blood
pressure and 8 of 9 top variants influencing systolic blood pressure were found in or close to our top 10 windows.

Background
Hypertension is a common chronic destructive disease
with unknown complex etiology [1]. More than1billion
people worldwide have hypertension, defined as blood
pressure (BP) ≥140 mm Hg systolic (SBP) or ≥90 mm Hg
diastolic (DBP) [2], which is a major risk factor for stroke,
myocardial infarction, heart failure, and a cause of
chronic kidney disease [3-5]. Both genetic and environ-
mental bases are likely to contribute to this disease. Ehret
et al. conducted a large-scale genome-wide association
study of hypertension in 2011 and identified 10 novel loci
related to BP physiology [6]. Although numerous com-
mon genetic variants with small effects on BP have been
identified [6-8], the identified variants account for only a
small fraction of disease heritability [9]. One potential
source of missing heritability is the contribution of rare
variants. Recently, next-generation sequencing technolo-
gyhas enabled the sequencing of the whole genome of
large groups of individuals,which makes directly testing
rare variants feasible. The Genetic Analysis Workshop 18

(GAW18) data, which consists of a whole genome
sequencingdata set, is a large-scale pedigree-based sam-
ple with 959 individuals, 464 directly sequenced and the
rest imputed.
Several statistical methods have been proposed to

detect associations of rare variants, including the com-
bined multivariate and collapsing (CMC) method [10]
and the weighted sum statistic (WSS) [11]. We have pro-
posed a novel test for measuringthe effect of an optimally
weighted combination of variants (TOW) [12]. In addi-
tion, based on the TOW, we proposed a variable weight-
TOW (VW-TOW) aiming to test effects of both rare and
common variants. Both TOW and VW-TOW are applic-
able to quantitative and qualitative traits, allow covari-
ates, and are robust to directions of effects of causal
variants.
In this article, we report a novel whole genome sliding

window approach to detect genetic association between a
trait and single-nucleotide polymorphism (SNP) regions
across the entire genome. This approach integrates TOW
and VW-TOW with the concept of sliding window [13].
Applied to the GAW18 replication 1, chromosome 3 data
set, our approach yielded results consistent with the top
genes influencing simulated SBP and DBP, which were
generated from the GAW18 simulation model.
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Methods
Consider a sample of n individuals. Each individual has
been genotyped at M variants in a genomic region.
Denote yi as the quantitative trait value. Denote
Xi = (xi1, ..., xiM)T as the genotypic score of the ith indi-
vidual, where xim ∈ {0, 1, 2} is the number of minor
alleles that the ith individual has at the mth variant.
Suppose we have p covariates. Let (zi1, ..., zip)T denote

covariates of the ith individual. We adjust both trait value
yi and genotypic score xim for the covariates by applying
linear regressions. That is, yi = α0 + α1zi1 + ... + αpzip + εi

and xim = α0m + α1mzi1 + ... + αpmzip + τim.
Let ỹi and x̃im denote the residuals of yi and xim,

respectively. Denote X̃i = (x̃i1, . . . , x̃iM) as the residuals
of the genotypic score of the ith individual.
Using the generalized linear model (GLM) to model the

relationship between trait values and genotypes is equiva-
lent to modeling the relationship between the residuals of
trait values and the residuals of genotypes through
GLM (1), where g() is a monotone “link” function.

g(E(ỹi|X̃i)) = β0 + β1x̃i1 + · · · + βMx̃iM (1)

Under the GLM, the score test statistic to
test the null hypothesis H0 : β = 0 is given by

U =
∑n

i=1
(ỹi − ¯̃y)(X̃i − ¯̃X), where U =

∑n

i=1
(ỹi − ¯̃y)(X̃i − ¯̃X)

and V =
1
n

∑n

i=1
(ỹi − ¯̃y)2

∑n

i=1
(X̃i − ¯̃X)(X̃i − ¯̃X)T. The

statistic S asymptotically follows a chi-square distribu-
tion with k = rank(V) degrees of freedom (DF). For
rare variants, however, the score test may lose power
as a result of the sparse data and a large DFk. In rare
variants association studies, to test for the effect of the

weighted combination of variants, xi =
M∑
m=1

wmxim, the

score test statistic becomes

S(w1, · · · ,wM) = n
(
∑n

i=1 (ỹi − ¯̃y)(x̃i − ¯̃x))2∑n
i=1 (ỹi − ¯̃y)2 ∑n

i=1 (x̃i − ¯̃x)2
= n

(
∑M

m=1 wm
∑n

i=1 (ỹi − ¯̃y)(x̃im − ¯̃xm))2∑n
i=1 (ỹi − ¯̃y)2 ∑n

i=1 (x̃i − ¯̃x)2
.

Because rare variants are essentially independent, we
have

∑n

i=1
(x̃i − ¯̃x)2 =

∑M

m=1

∑M

m=1
wmwl

∑n

i=1
(x̃im − ¯̃xm)(x̃il − ¯̃xl) ≈

∑M

m=1
w2
m

∑n

i=1
(x̃im − ¯̃xm)

2

Let am =

∑n
i=1 (ỹi − ¯̃y)(xim − ¯̃x)√∑n

i=1 (xim − ¯̃xm)2
and um = wm

√∑n

i=1
(x̃im − ¯̃xm)2.

Then, the score test statistic is approximately equal to

S0(w1, · · · ,wM) = n
(
∑M

m=1 amum)
2

∑n
i=1 (ỹi − ¯̃y)2 ∑M

m=1 u
2
m

.

As a function of (u1, · · · , uM), S0(w1, · · ·wM) reaches its
maximum when um = am or wm =

∑n

i=1
(ỹi − ¯̃y)(x̃im − ¯̃xm)/

∑n

i=1
(x̃im − ¯̃xm)2

(m = 1, · · · ,M). We denote wo
m as the optimal weight

which is given by wo
m =

∑n

i=1
(ỹi − ¯̃y)(x̃im − ¯̃xm)/

∑n

i=1
(x̃im − ¯̃xm)2.

Let x̃oi =
∑M

m−1
wo
mx̃im. Then S0(wo

1, · · · ,wo
M) = n

∑n

i=1
(ỹi − ¯̃y)(x̃o1 − ¯̃xo)/

∑n

i=1
(ỹi − ¯̃y)2.

We propose the new test statistic TOW to test the effect
of the optimally weighted combination of variants∑M

m=1
wo
mx̃im as TT =

∑n

i=1
(ỹi − ¯̃y)(x̃o1 − ¯̃xo). TT is equiva-

lent to S0(wo
1, · · ·wo

M) since
∑n

i=1
(ỹi − ¯̃y)2 is a constant.

The optimal weight wo
m will put big weights to the variants

that have strong associations with the traits of interest and
adjust the direction of the association. Also, wo

m will put
big weights to rare variants. TOW targets rare variants
and will lose power when testing for the effect of both rare
and common variants. For testing the effects of both rare
and common variants, we propose a new statistic, VW-
TOW. We divide variants into rare (minor allele frequency
[MAF] <the rare variant threshold [RVT]) and common
(MAF > RVT), and apply TOW to the rare and common
variants separately.
Define the test statistic of VW-TOW as

TVW−T = min0≤λ≤1pλ, where pλ is the p value of Tλ.
Tr, Tr and Tc denote the test statistics of TOW for rare and
common variants, respectively. Here, we evaluate the
minimization by dividing the interval [0, 1] into K subin-
tervals of equal-length. Let λk = k/K for k = 0, 1, · · · ,K.
Then,min0≤λ≤1pλ = min0≤k≤Kpλk.
We use permutation tests to evaluate p values of both

TT and TVW−T. To evaluate the p value of the test TT, let
T0
T denote the value of the test statistic based on the ori-

ginal data set. For each permutation, we randomly
resample from residuals of trait values and denote the
value of the test statistic based on the permuted data
setby Tper

T . We perform the permutation procedure
many times. Then the p value of the test is the propor-
tion of the number of permutations with Tper

T > T0
T. We

permute B times of permutations to evaluate the p value
of TVW−T. Let T(b)

r and T(b)
c denote the values of Tr and

Tc based on the bth permuted data, where b = 0 repre-
sents the original data. Based on T(b)

r and T(b)
c

(b = 0, 1, · · · ,B), we can calculate Tb
λk
for b = 0, 1, · · · ,B

and k = 0, 1, · · · ,K , where var (Tr) and var (Tc) are esti-
mated using T(b)

r and T(b)
c (b = 1, · · · ,B). Then, we trans-

fer T(b)
λk

to p(b)λk
by p(b)λk

=

∑B
i=0 I(T

(i)
λk

> T(b)
λk

)

B
, where I() is

the indicator function. Let p(b) = min0≤k≤Kp
(b)
λk
. Then the

p value of TVW−T is given by
∑B

i=1 I(p
(b) < p(0))
B

, where

I() is the indicator function.
We use TOW and VW-TOW to analyze the data set

of unrelated individuals of GAW18 replication 1 on
chromosome 3. To apply TOW and VW-TOW to the
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entire chromosome 3, we propose a sliding-window
approach [13]. To use sliding windows, we divide all SNPs
into contiguous windows and apply TOW and VW-TOW
in each window. Suppose that we use windows with a win-
dow size of S, then, all the SNPs can be divided into win-
dows: 1 to S, S+1 to 2S, 2S+1 to 3S, and so on.
To analyze the data set of GAW18 replication 1, chro-

mosome 3 for unrelated individuals, we set the window
size as 20. First we performed quality control tests for the
genotype data with the PLINK toolset. We used
10,000,000 permutations to evaluate the empirical
p values of TOW for DBP and SBP data, and 100,000
permutations to evaluate the empirical p values of VW-
TOW for DBP and SBP data. Becausethe sample of unre-
lated individuals in GAW18 is relatively small, it is not so
reasonable to claim the significance either by the false-
discovery rate or by the Bonferroni-corrected threshold.
Therefore, we recommend the top 10 most promising
windows with the smallest p values for follow-up studies.

Results
We applied TOW and VW-TOW incorporating the
sliding window approaches to analyze the hypertension
unrelated individuals’data set of GAW18. To facilitate
comparisons among GAW18 contributions, we analyzed
only replicate 1 on chromosome 3. To evaluate type I
error rates of TOW and VW-TOW, we used all 200
replicates of simulated phenotype data. There are 157
unrelated individuals in the GAW18 pedigree-based
sample. Among the 157 individuals, 142 have observa-
tions for SBP, DBP, and other demographic/clinical vari-
ables at exam 1. Our analysis was based on the 142
individuals and their genotypes, quantitative trait SBP,
DBP, and other characteristicsat exam 1.
The total genotyping rate in the 142 individuals is

0.9997. We did not find any duplicated samples or

sample contamination. No individual was filtered out
from the multidimensional scaling (MDS) analysis. Of
the 1,215,399 SNPs on chromosome 3, we removed
251,892 completely missing SNPs and retained 963,507
SNPs for final analysis. Because SBP and DBP varied by
sex and increased with age, age and sex were considered
as covariates in this study.
We listed the top 10 most promising windows out of

48,176 windows across the entire chromosome 3. The
top 8 windows all reside in gene MAP4, which is the
most susceptible gene on chromosome 3 for hyperten-
sion. Seven of 9 top variants influencing DBP and 8 of 9
top variants influencing SBP on chromosome 3 were
found in or close to our top windows. Tables 1 and 2
show the top 10 most promising windows by TOW that
are associated with DBP and SBP, respectively. The p
values of TOW in the top 3 windows of Table 1 are very
small. SNP 3_47957996, 3_ 47956424, and 3_47957741
are the third, fourth, and ninth variants in Table 2 of the
GAW18 answer sheet. They all fell into our third window
in Table 1 and the first window in Table 2.
To evaluate the type I error rates of the proposed slid-

ing window approach, we chose 100 blocks (20 variants
in each block) from chromosome 3 that are far from
causal variants. In each block, we applied TOW and
VW-TOW to each of the 200 replicates to test associa-
tion between genotypes and the trait DBP. We obtained
1 p value for each replicate and each block. Figure 1
shows the histograms of TOW and VW-TOW. The his-
tograms indicate that the type I error rates of both
TOW and VW-TOW are under control.

Discussion
In this article, we proposed a sliding-window-based opti-
mal weighted approach to test for the effects of both
rare and common variants across the whole genome. In

Table 1 Top 10 most promising windows associated with DBP

WID Chr Physical location Empirical pTOW Empirical pVW-TOW Gene Reference variants

1 3 48117215,48121372 2.34 × 10−7 0.0005 MAP4

2 3 48063171,48068858 4.95 × 10−7 0.0005 MAP4

3 3 47957289,47961091 4.09 × 10−6 0.0006 MAP4 3_47957996
3_47956424
3_47957741

4 3 48034051,48040240 1.42 × 10−5 0.001 MAP4 3_48040284
3_48040283

5 3 48089115,48094079 2.06 × 10−5 0.001 MAP4

6 3 48005035,48009105 2.69 × 10−5 0.0015 MAP4

7 3 47929938,47935009 5.29 × 10−5 0.001 MAP4

8 3 47912703,47920240 9.06 × 10−5 0.001 MAP4 3_47913455

9 3 4474736,4477687 0.036 0.071 SUMF1 3_45008742

10 3 56871312,56875674 0.03 0.058 ARHGF3 3_56870810*

Chr, Chromosome; empirical pTOW , p value of TOW; empirical pVW-TOW, p value of VW-TOW; reference variants, top 55 variants influencing SBP and DBP in Table 2
of the answers of GAW18; WID, window ID.

*The variants are provided in the Supplemental Table 1 of the answer sheet of GAW18.
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each window, our recently developed TOW and VW-
TOW were applied to test genetic association between a
disease and a combination of variants. Then, we applied
the method to unrelated individuals of GAW18 on

replicate 1, chromosome 3. We detected 3 susceptible
windows across chromosome 3 for DBP and identified
10 out of 48,176 windows as the most promising win-
dows for DBP and SBP. Becausethis is a simulated

Table 2 Top 10 most promising windows associated with SBP

WID Chr Physical location Empirical pTOW Empirical pVW-TOW Gene Reference variants

1 3 47957289,47961091 0.005 0.004 MAP4 3_47957996
3_47956424
3_47957741

2 3 48034051,48040240 0.003 0.007 MAP4

3 3 47990787,47999337 0.01 0.013 MAP4

4 3 48040283,48046708 0.02 0.01 MAP4 3_48040284
3_48040283

5 3 47912703,47920240 0.03 0.017 MAP4 3_47913455

6 3 48121395,48126740 0.015 0.032 MAP4

7 3 47929938,47935009 0.025 0.04 MAP4

8 3 48063171,48068858 0.015 0.01 MAP4

9 3 58104877,58108614 0.01 0.031 FLNB 3_58109162

10 3 15664089,15667215 0.039 0.011 BTD 3_15686693

Chr, Chromosome; empirical pTOW , p value of TOW; empirical pVW-TOW, p value of VW-TOW; reference variants, top 55 variants influencing SBP and DBP in Table 2
of the answers of GAW18; WID, window ID.

Figure 1 Histograms of p values for TOW and VW-TOW.

Figure 2 Power comparisons of TOW, CMC, VW-TOW, and WSS using DBP as phenotype measurement. The numbers on the x axis refer
to the 44 blocks of gene MAP4.
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dataset, it is possible that the other genes identified were
not listed in the top 10 windows but are actually related
to SBP or DBP.
In this study, we use each window of size 20 across

the entire chromosome 3. How to choose an appropriate
window size is a critical question. We evaluated the
effect of window size by running window sizes at 30, 40,
and 50, respectively. However, the power of TOW was
not increased when using a larger window size.
Although the power of VW-TOW was slightly increased
when using a larger window size, no window can pass
the entire chromosome 3 Bonferroni-corrected
threshold.
TOW and VW-TOW can be robust to population

stratification by adjusting the first K principalcompo-
nents (PCs) of genotypes at genomic markers as covari-
ates when calculating the residuals of trait and of
genotype matrix. In this GAW18 data analysis, we did
not adjust for PCsbecausewe believed that population
stratification was not severe in this data based on our
MDS analysis.
To further assess our new approach, we compared the

power of TOW, VW-TOW, CMC, and WSS to detect
association between gene MAP4 and DBP. The MAP4
was split into 44 windows (blocks) with 20 variants in
each window. In each window, we calculated the power
of each method based on 200 replicates. The power
comparisons based on phenotype measurement DBP are
given in Figure 2. This figure shows that in most of the
windows, TOW is the most powerful test; VW-TOW is
the second most powerful test.
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