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Abstract

In recent years, longitudinal family-based studies have had success in identifying genetic variants that influence
complex traits in genome-wide association studies. In this paper, we suggest that longitudinal analyses may contain
valuable information that can enable identification of additional associations compared to baseline analyses. Using
Genetic Analysis Workshop 18 data, consisting of whole genome sequence data in a pedigree-based sample, we
compared 3 methods for the genetic analysis of longitudinal data to an analysis that used baseline data only. These
longitudinal methods were (a) longitudinal mixed-effects model; (b) analysis of the mean trait over time; and (c) a
2-stage analysis, with estimation of a random intercept in the first stage and regression of the random intercept on a
single-nucleotide polymorphism at the second stage. All methods accounted for the familial correlation among
subjects within a pedigree. The analyses considered common variants with minor allele frequency above 5% on
chromosome 3. Analyses were performed without knowledge of the simulation model. The 3 longitudinal methods
showed consistent results, which were generally different from those found by using only the baseline observation.
The gene CACNA2D3, identified by both longitudinal and baseline approaches, had a stronger signal in the
longitudinal analysis (p = 2.65 × 10−7) compared to that in the baseline analysis (p = 2.48 × 10−5). The effect size of
the longitudinal mixed-effects model and mean trait were higher compared to the 2-stage approach. The
longitudinal results provided stable results different from that using 1 observation at baseline and generally had
lower p values.

Background
Longitudinal data analyses are widely used in genome-
wide association studies to assess genetic and environ-
mental risk factors and their association with phenotypes
of interest [1-3]. They are more complicated than ana-
lyses using only baseline measures because subjects are
followed over time and change is measured during fol-
low-up. Standard linear regression techniques are not
applicable in this setting because of the correlation that
exists among the repeated measures per subject. Methods
for longitudinal study designs have enabled the investiga-
tion of genetic variation influencing trait values over time
[3]. In Genetic Analysis Workshop 13, Gauderman et al
[4] provided an overview of a wide range of methods for

the genetic analysis of longitudinal data in families. They
summarized these methods into 2 groups: (a) 2-stage
approaches, in which a summary statistic is obtained and
used in genetic analysis, and (b) joint modeling, in which
the genetic and longitudinal data are analyzed simulta-
neously in a single analysis. They argued that the use of a
mean-type statistic could provide greater power com-
pared to a slope-type statistic for detecting a gene effect.
Zhu et al [1] performed a genome-wide association in
which they identified genes and gene-environment inter-
actions associated with longitudinal traits. They imple-
mented a multivariate adaptive spline for the analysis of
the longitudinal data.
In this paper, our main object is to compare existing

methods of longitudinal data analyses with those that use
only 1 baseline measure in association studies. We
explore the following longitudinal methods: (a) a longitu-
dinal mixed-effects model; (b) analysis of the mean trait
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over time; and (c) a 2-stage analysis, with estimation of a
random intercept in the first stage and regression of the
random intercept on a single-nucleotide polymorphism
(SNP) in the second stage. These longitudinal methods
use statistics that capture the level of a trait, such as a
mean, to detect genetic associations as opposed to meth-
ods that focus on the change in the trait over time, such
as a slope. Despite the strengths and integrated approach
of a longitudinal mixed model, its implementation is very
computer-intensive because of its complex structure.
Therefore, the main motivation for trying some “simpler”
alternative longitudinal models, such as analysis of the
mean trait over time and a 2-stage analysis, is to see if
they can serve as good substitutes with equally good
performance.

Methods
Study subjects and phenotype
We used real phenotype data collected in the San Antonio
Family Heart Study, including sex, age, year of examina-
tion, systolic and diastolic blood pressure, use of antihy-
pertensive medications, and tobacco smoking at up to 4
time points for 939 subjects in 20 pedigrees. Of the 939
participants, 244 attended only 1 exam; for the remaining
subjects, the median follow-up time was 11 years with a
median gap time between assessments of 5 years. We ana-
lyzed 2 continuous traits: systolic blood pressure (SBP)
and diastolic blood pressure (DBP). For participants on
medication, we imputed both SBP and DBP to mimic
what their unmedicated values would be. If a subject was
on medications at an exam, we imputed the blood pres-
sure at this exam to be the average blood pressure of all
observations with higher values among those of the same
gender and ± 10 years of the age of the subject. We per-
formed a preliminary analysis to select covariates for both
SBP and DBP. Variables significantly associated (p < 0.05)
with SBP or DBP were selected. For SBP, we adjusted for
age, sex, and tobacco smoking. For DBP, we adjusted for
age, sex, tobacco smoking, and centered age squared.

Genetic data
The genetic data from Genetic Analysis Workshop 18
(GAW18) consisted of whole genome sequence data in
a pedigree-based sample with longitudinal phenotype
data for hypertension and related traits. A total of 26.8
million SNPs were identified in the 483 individuals.
After eliminating 19 outlier individuals who failed to
meet SNP quality control criteria such as fractions and
ratio of homogeneous and heterogeneous sites and frac-
tion of novel SNPs, 24 million SNPs passed support vec-
tor machine and indel proximity filters. Genotype calls
cleaned of mendelian errors and dosages were provided
for 959 individuals (464 directly sequenced and the rest
imputed) for 8,348,674 locations in the genome.

A majority of the SNPs were rare variants; 51% had a
minor allele frequency (MAF) below 1%. As suggested
by GAW18 leaders, all analyses for this current paper
were based on 402,985 common variants (MAF ≥5%) of
chromosome 3 only, accounting for around one-third of
the total number of variants on the chromosome.

Statistical analyses
Baseline association analysis
For comparison with the methods that used the longitudi-
nal data, we applied a baseline association analysis that con-
sidered only the first observation (baseline) for each person.
In addition to adjusting for covariates, we incorporated a
familial correlation structure (kinship coefficient matrix)
into the model as Yij0 = β0 + Xij0 β + βsSNPij + αij + εij,
where i denotes the ith pedigree, and j denotes the jth indivi-
dual in the ith pedigree. For this individual, Yij0 denotes the
phenotype at baseline, Xij0 = (Xij01, . . . ,Xij0m) denotes the
covariates at baseline, and SNPij denotes the SNP dosage.
β0 is the fixed intercept, β = (β1,β2, . . . ,βm)′ is a vector of
regression coefficients for the m covariates, and βs is the
SNP effect size; αij is the random intercept for the (i,j)th per-
son. Within each pedigree, the vector αi = (αi1, . . . ,αini)
is normally distributed with a mean of 0 and a covariance
matrix of σ 2�kin (the kinship matrix), contributing a diago-
nal block for each pedigree to the overall covariance matrix;
εij is an error term with a mean of 0 and a variance of σ 2

ε
.

This model was implemented using the lmekin package in
R (version 2.9.2) package “kinship” [5], which employed
maximum likelihood methods to estimate parameters.
The notations of β0,β ,βs, SNPij,αij, εij used in this

baseline model apply to the following models where
applicable.
To compare with the baseline approach, we consid-

ered 3 approaches for longitudinal analyses of these
data: (a) longitudinal mixed-effects association analysis,
(b) mean measure in longitudinal association analysis,
and (c) 2-stage longitudinal association analysis.
Longitudinal mixed-effects association analysis
We used a random-intercept mixed effects model with
familial correlation structure [7]. The model is:

Yijt = β0 + Xijtβ + βsSNPij + αij + εij (1)

Here i denotes the ith pedigree, and j denotes the jth indi-
vidual in the ith pedigree. For this individual, Yijt denotes
the trait at time point t; Xijt = (Xijt1,Xijt2, . . . ,Xijtm) denotes
the covariates at time t, including time-dependent covari-
ates. This model was implemented in the R (version 2.15.1)
package “pedigreemm” [6], which used the method of
restricted maximum likelihood for parameter estimation.
Mean measure in longitudinal association analysis
We also considered the mean across all time points as
the trait and its corresponding averaged covariates as
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one alternative for longitudinal association analysis. This
model is:

Y∗
ij = β0 + X∗

ijβ + βsSNPij + αij + εij (2)

Here i denotes the ith pedigree, and j denotes the jth indi-
vidual in the ith pedigree. For this individual, Y∗

ij denotes the

mean trait across time. X∗
ij = (X∗

ij1,X
∗
ij2, . . . ,X

∗
ijm) denotes

the covariates, which for time-dependent covariates is the
average measure across time.
This model was implemented using the function lme-

kin in R (version 2.9.2) package “kinship” [5], using
maximum likelihood methods to estimate parameters.
Two-stage longitudinal association analysis
Another longitudinal approach employs a 2-stage strat-
egy [4]. In the first stage, a random intercept, αij, as the
level of the trait for each person was generated from a
growth curve model:

Yijt = β10 + Xijtβ + αij + εij (4)

Here i denotes the ith pedigree, and j denotes the jth indi-
vidual in the ith pedigree. For this individual, Yijt denotes
the trait at time point t. Xijt = (Xijt1, Xijt2, . . . , Xijtm)
denotes the covariates including time-dependent covariates.
β10 is the fixed intercept of the first stage; αij is the random
intercept. As above, the covariance structure of αij is
σ 2�kin, which contributes a diagonal block for each pedi-
gree to the overall covariance matrix.
In the second stage, random intercept αij is treated as

the “new” trait and regressed on a SNP as follows:

αij = β20 + βsSNPij + γij + εij (5)

Here SNPij denotes the SNP dosage. β20 is the intercept
of the second stage; βs is the SNP effect size; εij is an
error term with a mean of 0 and a variance of σ 2

ε ,γij is the
random intercept that adjusts for the familiar correlation
of αij; and, similarly, the vector γi = (γi1, . . . , γini) is nor-
mally distributed with a mean of 0 and a covariance
matrix of σ 2

γ �kin, contributing a diagonal block for each
pedigree to the overall covariance matrix.
Gauderman et al [4] pointed out that a mean-based

statistic is more powerful to detect a genetic association
than a slope-based statistic (eg, a random slope). So
here we adopted the random intercept of the first stage
rather than the random slope as the “trait” in the second
stage. The first-stage model was implemented using
lmekin of the R (version 2.15.1) package “coxme” [6],
which could handle more than 1 random effect; the sec-
ond-stage model was implemented using lmekin of the
R (version 2.9.2) package “kinship”[5], which adopted a
faster computing algorithm. Both packages used maxi-
mum likelihood in parameter estimation.

Power and type I error
We conducted power calculations for all 4 methods and
evaluated type I error by means of the genomic control
value. We chose the variant (chromosome 3: 47956424)
on gene MAP4, the top variant influencing simulated
SBP and DBP, as the functional variant for power calcu-
lations. To determine power, we tested the null hypoth-
esis that the trait SBP was not associated with the
functional variant, versus the alternative hypothesis that
it is associated. Therefore, results would be considered
statistically significant if the p value obtained using the
analysis methods fell below a predetermined threshold.
Here we divided the significance level 0.05 by the
approximate number (25,676) of independent SNPs on
chromosome 3 to adjust for multiple testing. We used
PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/)
[8] to prune out SNPs on chromosome 3 where the
pairwise linkage disequilibrium was 0.2 or greater, and
25,676 SNPs remained. For each of the 4 methods, the
estimated power was the proportion of replicates in
which the method detected a significant association
between the trait and the functional variant.
For each of the 4 methods, genomic control value was

used to assess the extent of the inflation of type I error,
based on the p value of common variants on chromo-
some 3.

Results
Association analysis of real data
For SBP, there were no shared results in the top 10 hits
between the baseline approach and the other 3 longitudi-
nal methods (Table 1). Some shared genes identified by
the longitudinal methods were FGF12 and FHIT. The
mean measure and 2-stage methods yielded similar results.
For DBP, the 3 longitudinal methods yielded consistent
results (as shown in Figure 1, right side): the top 10 hits
came from the same gene (CACNA2D3 in Table 2; eg,
SNP 3_54748234 has a p value of 2.65 × 10−7), with SNPs
nearly reaching a Bonferroni significance threshold. This
gene was also found using the baseline method but was
less significant (rank = 2, p = 2.76E-05 in Table 2).

Power and type I error
Power was computed to assess the baseline method and
the 3 longitudinal methods (Table 3). The 3 longitudinal
methods had at least 10.5% higher power than the base-
line method. Among the longitudinal methods, the
power of both mean measure and 2-stage methods was
comparable (41% and 40.5%, respectively) and substan-
tially higher than that of the linear mixed-effects (LME)
method (32.5%). None of the 4 methods showed ele-
vated type I error because the genomic control value
ranged from about 0.98 to 1.034.
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Table 1 TOP 10 hits of SBP on chromosome 3 across the baseline method and the 3 longitudinal methods

Baseline Longitudinal Mean measure Two-stage

SNP Effect
size

SE P Closest*
genes

SNP Effect
size

SE P Closest*
genes

SNP Effect
size

SE P Closest*
genes

SNP Effect
size

SE P Closest*
genes

3_149871159 5.31 1.22 1.63E-
05

LOC646903, 3_106220130 −4.36 1.02 2.16E-
05

LOC100302640 3_106220130 −4.68 1.05 9.16E-
06

BCHE 3_165046920 2.96 0.68 1.33E-
05

SLITRK3

3_133160911 4.02 0.93 1.83E-
05

BFSP2 3_113652027 3.77 0.89 2.34E-
05

GRAMD1C 3_106220437 −4.65 1.05 1.06E-
05

FGF12 3_59966975 2.52 0.58 1.59E-
05

FHIT

3_149894219 5.10 1.22 3.41E-
05

LOC646903, 3_106217172 −4.33 1.03 2.57E-
05

LOC100302640 3_106217172 −4.66 1.05 1.07E-
05

FGF12 3_192240010 −3.67 0.86 2.14E-
05

FGF12

3_122390279 5.24 1.26 3.65E-
05

PARP14 3_165046920 4.21 1.00 2.82E-
05

SLITRK3 3_106218053 −4.62 1.07 1.64E-
05

FHIT 3_192239815 −3.81 0.90 2.31E-
05

FGF12

3_57173021 3.87 0.93 3.75E-
05

IL17RD 3_106220437 −4.29 1.02 2.89E-
05

LOC100302640 3_106219390 −4.62 1.07 1.64E-
05

DOCK3 3_50996289 4.18 0.99 2.55E-
05

DOCK3

3_120020489 3.73 0.90 3.95E-
05

LRRC58 3_59966975 3.58 0.86 3.15E-
05

FHIT 3_106231571 −4.54 1.05 1.71E-
05

BCHE 3_165049274 2.75 0.66 3.35E-
05

SLITRK3

3_120023242 3.73 0.90 3.95E-
05

LRRC58 3_192239815 −5.47 1.31 3.20E-
05

FGF12 3_106232849 −4.51 1.05 1.86E-
05

BCHE 3_165046402 2.71 0.66 4.21E-
05

SLITRK3

3_108188993 −3.77 0.91 4.00E-
05

MYH15 3_192240010 −5.28 1.27 3.27E-
05

FGF12 3_106220258 −4.39 1.02 1.86E-
05

ZNF385D 3_165053404 2.63 0.66 6.83E-
05

SLITRK3

3_140640076 7.59 1.84 4.08E-
05

SLC25A36 3_72678387 −4.30 1.04 3.38E-
05

SHQ1 3_106220368 −4.45 1.05 2.41E-
05

MYH15 3_21520730 4.60 1.16 7.82E-
05

ZNF385D

3_158228266 −4.87 1.18 4.31E-
05

RSRC1 3_106218053 −4.28 1.04 4.20E-
05

LOC100302640 3_72678387 −4.53 1.07 2.56E-
05

BCHE 3_113652027 2.40 0.60 7.94E-
05

GRAMD1C

*In the field “closest genes"; a bold gene name indicates that the SNP on the same row is right on that gene.
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Discussion and conclusions
For both traits, the genes identified by the 3 longitudinal
methods were consistent, but different from those found
with the baseline approach. From the perspective of
computational time, the mean measure and 2-stage

methods were more computer efficient than the LME
method. Furthermore, these 2 longitudinal methods
were more powerful than the LME method. These 2
methods can act as efficient and powerful “substitutes”
for LME. The mean measure method worked as well as

Figure 1 Manhattan plots on chromosome 3 using both the baseline and 3 longitudinal methods for SBP and DBP.
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Table 2 TOP 10 hits of DBP on chromosome 3 across the baseline method and the 3 longitudinal methods

Baseline Longitudinal Mean-measure Two-stage

SNP Effect
size

SE P Closest*
genes

SNP Effect
size

SE P Closest*
genes

SNP Effect
size

SE P Closest*
genes

SNP Effect
size

SE P Closest*
genes

3_164797024 4.98 1.17 2.48E-05 SI 3_54748234 2.20 0.43 2.65E-
07

CACNA2D3 3_54748234 2.23 0.44 3.73E-
07

CACNA2D3 3_54757032 1.10 0.21 1.83E-
07

CACNA2D3

3_54748368 −2.15 0.51 2.76E-05 CACNA2D3 3_54757032 2.21 0.43 3.21E-
07

CACNA2D3 3_54757032 2.22 0.44 5.77E-
07

CACNA2D3 3_54748234 1.11 0.21 2.39E-
07

CACNA2D3

3_124142019 2.85 0.69 4.62E-05 KALRN 3_54748368 −2.15 0.42 3.84E-
07

CACNA2D3 3_54748368 -2.17 0.43 6.80E-
07

CACNA2D3 3_54793253 1.05 0.21 6.86E-
07

CACNA2D3

3_186144694 −3.17 0.78 5.83E-05 LOC253573 3_54784952 2.11 0.43 7.90E-
07

CACNA2D3 3_54793253 2.09 0.43 1.67E-
06

CACNA2D3 3_54799449 1.05 0.21 7.79E-
07

CACNA2D3

3_38845381 −3.68 0.91 6.06E-05 SCN10A 3_54793253 2.08 0.42 9.59E-
07

CACNA2D3 3_54784952 2.09 0.44 2.05E-
06

CACNA2D3 3_54784952 1.05 0.21 7.90E-
07

CACNA2D3

3_186209848 −3.05 0.78 0.000107 LOC253573 3_54779240 2.08 0.43 1.04E-
06

CACNA2D3 3_54799449 2.09 0.44 2.31E-
06

CACNA2D3 3_54748368 −1.05 0.21 8.15E-
07

CACNA2D3

3_87619500 2.32 0.60 0.000109 POU1F1 3_54756448 −2.10 0.43 1.07E-
06

CACNA2D3 3_54756448 -2.09 0.44 2.35E-
06

CACNA2D3 3_54779240 1.03 0.21 9.61E-
07

CACNA2D3

3_177961323 −2.05 0.53 0.000115 KCNMB2-
IT1

3_54756196 2.06 0.43 1.46E-
06

CACNA2D3 3_54756196 2.08 0.44 2.48E-
06

CACNA2D3 3_54807320 1.03 0.21 9.67E-
07

CACNA2D3

3_72651668 2.05 0.53 0.000132 SHQ1 3_54793450 −2.07 0.43 1.57E-
06

CACNA2D3 3_54747244 2.07 0.44 2.65E-
06

CACNA2D3 3_54756196 1.03 0.21 1.26E-
06

CACNA2D3

3_186149493 −3.04 0.79 0.000134 LOC253573 3_54740011 2.05 0.43 1.75E-
06

CACNA2D3 3_54740011 2.07 0.44 2.67E-
06

CACNA2D3 3_54799706 1.02 0.21 1.27E-
06

CACNA2D3

*In the field “closest genes"; a bold gene name indicates that the SNP on the same row is right on that gene.
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the 2-stage method, identifying the same genes. The sig-
nals found with the 2-stage method (third row of Man-
hattan plot in Figure 1) were almost identical to those
with the LME method, for both SBP and DBP. There-
fore, we concluded that the mean measure and 2-stage
methods were 2 efficient ways to analyze longitudinal
data when the goal is to examine level of a trait. Only
the longitudinal approach can evaluate associations with
trends over time.
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