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Abstract

Background: Although many genes have been implicated as hypertension candidates, to date, few studies have
integrated different types of genomic data for the purpose of biomarker selection.

Methods: Applying a newly proposed sparse representation based variable selection (SRVS) method to the Genetic
Analysis Workshop19 data, we analyzed a combined data set consisting of 11522 gene expressions and 354893
single-nucleotide polymorphisms (SNPs) from 397 subjects (case/control: 151/246), with the aim to identify potential
biomarkers for blood pressure using both gene expression measures and SNP data.

Results: Among the top 1000 variables (SNPs/gene expressions = 575/425) selected, the bioinformatics analysis
showed that 302 were plausibly associated with blood pressure. In addition, we identified 173 variables that were
associated with body weight and 84 associated with left ventricular contractility. Together, 55.9 % of the top 1000
variables showed associations with blood pressure related phenotypes(SNP/gene expression =348/211).

Conclusions: Our results support the feasibility of the SRVS algorithm in integrating multiple data sets of different

structure for comprehensive analysis.

Background

The determinants of blood pressure (BP) are likely to be
a complex combination of genetic, environmental, and
other potential confounders including age, gender and
smoking status [1]. Moreover, it has been documented
that heritability accounts for one-third to two-thirds of
the variability in BP [2].

Genome-wide association studies (GWAS) [3—-6] and
gene expression studies [7] have been conducted to
identify biomarkers, such as single-nucleotide polymor-
phisms (SNPs) and gene expression, associated with BP
phenotypes. Although many genes have been reported as
hypertension candidates [8], to date, a limited number of
studies have integrated different types of genomic data
to select biomarkers.
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Here we used a sparse representation based variable
selection (SRVS) method [9] to integrate a gene expres-
sion data set and a SNP data set acquired from the same
subjects, for the purpose of identifying BP related bio-
markers, and facilitate the understanding of genetic
mechanism of the BP disease. The SRVS method has
been shown to be feasible in identifying schizophrenia
candidate biomarkers, while integrating functional mag-
netic resonance imaging data and SNP data [10]. It has
also been demonstrated that the use of multiple data
types may provide higher power to identify potential bio-
markers that would be missed by using independent data
analysis [11].

Methods

Data description

The data set was provided by the Genetic Analysis Work-
shop 19. Phenotypes were measured at 4 time points, in-
cluding age; hypertension diagnosis (HD; yes = 1; no = 0);
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Systolic Blood Pressure (SBP); Diastolic Blood Pressure
(DBP); medication status (MS); smoking status (SS; yes =
1/no = 0) and gender. The expression data set consisted of
647 subjects with 16383 expression probes. In the SNP
data set, there were 959 subjects with 472049 SNPs, mea-
sured from the odd numbered chromosomes (1 ~21). In
the current study, we used the data obtained from the
third examination that has roughly balanced hyperten-
sion/non-hypertension numbers (Table 1). This data set
included 397 subjects from 46 families having both SNP
data and gene expression data. For simplicity, we deleted
gene expression probes and SNPs with no associated gene,
resulting in a combined data set of X e R37*(11522 + 354893)
(397 subjects with 11522 gene expression probes and
354893 SNPs). Table 1 summarizes the data set and their
clinical measures (age, sex, HD, SBP, DBP, MS, SS).

Sparse representation-based variable selection

We used 2 regression models to describe the relation-
ship between BP and 6 impact factors: Age, Sex, MS, SS,
SNP and gene expression variation.

BP=Y"" Xty (1)

y:[X5,X6]Bz]+s:X6+s (2)
Where X; for i=1~6 are the 6 impact factors; §; are
the regression coefficients for each factor. In this study,
BP € R™! is the BP measurement, SBP or DBP, where
m is the number of subjects; X;~X, € R™1 are Age, Sex,
MS and SS, respectively; §;~84 € RY; X5 € R™ M52 rep-
resents the gene expression measures and d; € R''**>;
Xg € R™3°*% represents the SNPs and 8 € R*>*89%<1;
g € R™ is the residual vector. X € R™" is the gen-
etic data matrix integrating both gene expression data
and SNP data; n=11522+ 35893 represents the total
number of gene expression probes and SNPs; columns of

X are normalized to have unit L2 norm. § = {gz } e R™!
is the solution to be found.
Table 1 Descriptive statistics of data set

Data set
Subject Number (m) 397
SBP (meanSD) 1252180
DBP (mean SD) 70.810.3
Hypertension cases 151
Age (mean SD) 477141
Sex (male) 167
MS (taking drug) 113
SS 66
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Here, we used the Linear Least Squares (LLS) method
to solve the linear regression given by Eq. (1) and ac-
quire the residual y.

In this analysis, we assumed that only a small number
of variables (eg, gene expressions or SNPs) were closely
associated with the phenotype (BP). Therefore, the
underdetermined linear regression problem given by Eq.
(2) becomes a sparse problem aiming to find a sparse so-
lution §, with a few non-zero entries corresponding to
BP related genetic variables.

Considering n> m, we employed a SRVS method,
proposed by [10] to solve Eq. (2) and identify potential
biomarkers (gene expressions/SNPs) associated with BP.

Sparse representation-based variable selection algorithm

1. Initialize 6 = 0;

2. For Step /randomly shuffle X with Fisher-Yates algo-
rithm [12]; Then separate X into sub-matrixes in
size m x k; denote those sub-matrixes as X; € R™;

3. Solve the following L, minimization problem to get
the optimal sparse solution &, € R*! for each sub-
matrix X

min”(?;Hpsubjectto Ily-X:8:]|2<¢; (3)

4. Update 6¥ € R™ with 8; 69 (1) = 8V (1)+8;
where 6? (1)) and 8V (1)) denote the I, th entries in
8" and 6“7V, respectively;

5. If a stopping rule is not satisfied, update /=/+ 1 and
go to Step 2. Otherwise, set 8 = 8”// and terminate.
The non-zero entries in § correspond to the column
vectors selected, that is, variable selection.

In Step 2, the column number of sub-matrixes X; is
chosen according to Cao et al. [10]. In Step 5, we set the
following 2 stopping rules: a)lI6%/1 -8~ Y/(1- 1), < a,
where a is a predefined threshold; and b.) The probabil-
ity that each pair of column vectors in X compared
should be greater than 1-pg,,. The algorithm terminates
when both rules are satisfied, which decides the total num-
ber of iterations. The Matlab software toolbox for the pro-
posed SRVS algorithm has been made available online:
http://hongbaocao.gousinfo.com/Software4ADownload.html.

Bioinformatics analysis

For each top gene selected, we used a biomedical data
analysis tool, the Rat Genome Database (RGD) for bio-
informatics analysis. The bioinformatics analysis was
based on Human Genome Assembly GRCh37 (Genome
Reference Consortium Human genome build 37) [13].
The input into RGD are the genes selected (the selected
SNP/expression corresponded genes). The outputs in-
clude the quantitative trait locus (QTL) study name,
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logarithm of odds (LOD) score, p value trait and sub-
trait. Significant variables (SNPs/gene expressions with
LOD score > 3) were reported.

Results

The impact of Age, Sex, MS and SS on BP

Table 2 details the considered regression coefficients:
Age, MS, SS and Sex. We obtained these coefficients by
solving Eq. (1) using a LLS approach. Figure 1 presents
the SBP and DBP measures on the 397 subjects before
and after the regression.

It can be seen from Fig. 1 that the residual SBP-res
and DBP-res were strongly correlated (Pearson correl-
ation coefficient > 0.82). Therefore, to select BP related
genetic variables (SNP/gene expression), we focused on
the case using SBP-res as phenotype for Eq. (3).

Sparse representation-based variable selection

Figure 2 describes the variable selection results for the
data set. Specifically, we analyzed the top 1000 variables
(SNPs/gene expressions) selected using the SRVS
method from the integrated data set consisting of 11522
gene expression probes and 354893 SNPs. Among those
variables, 575 SNPs and 425 expressions were selected,
corresponding to 756 genes in total. Figure 2 presents
the number of SNPs and gene expressions selected in
the top 100 to 1000 variables.

Bioinformatics analysis

For each of the top 1000 variables (SNPs/gene expres-
sions = 575/425), we performed a bioinformatics analysis
using RGD as a validation effort, aiming to explore the
biological relevance of the selected SNPs and expression
signals. Here we define “significant association between
genes and disease” as LOD score greater than 3. Figure 3
presents the detailed analysis results. Among those 1000
variables, 302 were plausibly linked to BP (LOD score >
3), 173 were linked to body weight and 84 were associ-
ated with left ventricular contractility. Together, 55.9 %
of the top 1000 variables revealed association with BP
related disease (SNP/gene expression =348/211), corre-
sponding to 330 genes.

Table 2 Regression coefficients between BP (SBP/DBP) and 4
clinical measures: Age, MS, SS and Sex

BP Age MS SS Sex
m=397 SBP 17 -89 134 255
DBP 08 -—142 107 197

Corr before/after regression
0.25/0.82

The regression coefficients were obtained from linear regression models given
by Eq. (3) fitted using the least squares approach. The ‘Corr’ is the Pearson
correlation coefficients
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Discussion

In this study, we integrated gene expression and SNP
data to select BP related biomarkers using a sparse rep-
resentation based method—SRVS [10]. The potential in-
fluence of 4 covariates on SBP was regressed out and the
residuals were then used as the phenotype vector for
genomic variable selection. Bioinformatics analysis [13]
was performed to study the association of the selected
markers/genes to BP-related disease.

Needless to say, in addition to genomic factors, envir-
onmental factors also play an important role in BP.
Therefore, regressing out their potential influence on BP
is necessary for the genomic analysis. In this study, we
first calculated the regression coefficients for the regres-
sion of SBP and 4confounders: Age, MS, SS and Sex.
The results (see Table 2) indicated that BP was positively
associated with age, SS and sex, and negatively associ-
ated with MS. Nevertheless, age had a weaker impact on
BP compared with the other 3 measures, whereas sex
seemed to play the most important role among the 4
factors. In addition, the correlations between SBP and
DBP before and after regressing out the effect of those
influential factors (0.25 vs. 0.82) may indicate that those
measures had different influence on SBP and DBP. Be-
cause the residual of SBP and DBP after regression
showed strong correlation (Pearson correlation coeffi-
cient > 0.82; see Fig. 1), we chose to focus on SBP re-
sidual based analysis.

Using the SBP residual and integrated data as inputs,
the SRVS algorithm ranked the 366415 variables (11,522
gene expression signals and 354,893 SNPs) in descend-
ing order, based on their contribution to SBP. We fo-
cused on the top 1000 variables. Interestingly, although
there are many more SNPs than gene expression probes
(354,893 vs. 11,522), a similar number of SNPs and ex-
pression signals were selected (SNPs/gene expressions =
575/425). Moreover, the selected gene expression signals
dominated the top 400 variables (>90 %), as shown in
Fig. 2. This may suggest that gene expression signals are
more closely related to the disease phenotype in this
data set. However, we would like to point out that non-
independence may raise false positive rates in analysis of
both SNP data and expression data.

For each of the top 1000 variables selected, we used an
online bioinformatics tool RGD to validate the selected
variables and identify the biologically meaningful SNPs
and expression signals. Among the 425 gene-expression
signals selected, approximately half (211/425) of the
RGD provided evidence of strong association with BP
phenotypes (i.e, body weight, BP and left ventricular
contraction), as depicted in Fig. 3. It has been conceptu-
alized that obesity can lead to increased risk of heart dis-
ease and high BP [13], while the left ventricle influences
the BP directly.
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Fig. 1 Blood pressure phenotypes of 397 subjects. SBP-res and DBP-res are the residual y of regression problem given by Eq. (1) for SBP and DBP,
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Among the top 500 to 1000 selected variables, more
SNPs than gene expression signals were selected, as
shown in Fig. 2. In addition, more left ventricular con-
tractility related genes were identified. In total, approxi-
mately 60 % of the selected SNPs were identified as “BP
related” (348/575) (LOD score >3). This observation
may suggest that, although SNPs are unlikely to directly
cause the disease phenotypes, they may affect the

development of BP related diseases via regulating RNA
expressions.

It should be noted that, while most genes were identi-
fied using 1 marker (either SNP or gene expression), some
newly identified genes were selected multi-times by dif-
ferent makers. Those genes include GNB1, MEGF6,
MMEL1, MORN1, PANK4, PLCH2, PRDM16, PRKCZ,
and TP73. These markers are worth further study.
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Fig. 3 LOD analysis results for the top 1000 variables selected. a Pie plot of the variable distribution for the top 1000 variables. b Bar plot for the
number of variables linked to left ventricular, body weight and blood pressure in the top 100 to 1000 variables selected

(b)

Among the top 1000 variables selected, 44 % do not
show strong association with BP (Enrichment LOD
score < 3). However, for many of the remaining genes
there was evidence of weak linkage (Enrichment LOD >
2) and some demonstrated strong linkage to BP in rat
studies [14]. Because of the lack of space, we did not in-
clude a detailed discussion of these variables.

Of note, both case and control groups included family
members. Although the shared genetic factors may en-
rich true signals and therefore help to detect potential
biomarkers that may be missed in independent subject
analysis, this familial correlation may also lead to in-
creased false positives. Therefore, further analysis using
independent samples of larger size should be performed
to validate the results reported here and to study the
correlations between the selected variables. We would
like to note that this work focuses more on the feasibility
of our sparse algorithm than the discovery of true
biomarkers.

Conclusions

Using our SRVS based integrated analysis of gene expres-
sion and SNP data sets, we ranked 11522 gene expression
measurements and 354893 SNPs and then performed bio-
informatics analysis on each of the top 1000 variables se-
lected. Results showed that 559 variables (SNPs/gene
expressions), corresponding to 330 genes, may serve as
potential biomarkers for BP related disease (LOD score >
3). Nevertheless, a portion of the selected variables are

likely to be false positives. Molecular validation is needed
before any solid conclusions can be made. However, re-
sults of the current study demonstrate the feasibility of
the SRVS algorithm for a comprehensive analysis of mul-
tiple data sets of different structure.
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