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Abstract

Background: Whereas genome-wide association study (GWAS) has proven to be an important tool for discovery of
variants influencing many human diseases and traits, unfortunately its performance has not been much of all-around
success for some complex conditions, for example, hypertension. Because some of the existing effective
pharmacotherapeutic agents act by targeting known biological pathways, pathway-based analytical approaches could
lead to more success in discovery of disease-associated variants. The objective of the present study was to identify
functional variants associated with blood pressure in the aldosterone-regulated sodium reabsorption pathway using
the simulated and real blood pressure phenotypes provided for Genetic Analysis Workshop 19.

Methods: The present analysis included 1942 samples with exome sequencing data and for whom blood pressure
phenotypes were available. Because only odd-numbered autosomes were available, we restricted analysis to 127
quality-controlled single-nucleotide polymorphisms from the aldosterone-regulated sodium reabsorption pathway. We
performed pathway-based association analysis using appropriate regression models for single variant, haplotype and
epistasis association analyses. To account for multiple comparisons, statistical significance was empirically derived by
permutation procedure and Bonferroni correction.

Results: The topmost pathway-based association signals were observed in PRKCA gene for diastolic blood pressure
(DBP), systolic blood pressure (SBP), and mean arterial pressure (MAP) in both real and simulated data. The associations
remained significant (P <0.05) after multiple testing corrections for the number of genes. Similarly, the pathway-based
2-locus epistasis analysis indicated significant interactions between INSR and PRKCG for SBP and MAP; INS and PIK3R2
for DBP; PIK3CD and ATP1B2 for hypertension in the real data set. We also observed significant within-gene interactions
in INSR for SBP, DBP, and hypertension in the simulated data set.

Conclusion: The findings from this study show that pathway-based analytical approach targeting known biological
pathways can be useful in identification of disease-associated variants that are otherwise undetectable by GWAS. The
approach takes advantage of the assumption of nonindependence of variants within and across pathway genes which
leads to reduced penalty of multiple testing and thus less-stringent statistical significance threshold.
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Background
Genome-wide association study (GWAS) has proved to
be a useful tool in the discovery of genetic variants asso-
ciated with many complex diseases and traits [1]. Unfor-
tunately, the level of success in variants discovery by
GWAS for some complex human diseases, such as
elevated blood pressure or hypertension, has been very
low. In fact, variants so far discovered through GWAS
collectively explain only a small fraction of the known
heritability for any of the diseases [2–5].
Given what is known about the biology of these

diseases and traits, it is suspected that important vari-
ants with moderate to large effect sizes remain to be
identified; this is commonly referred to as the “missing
heritability” [2, 3, 6, 7]. The explanations for missing
heritability include the postulation that it could lie in
regulatory rare variants, functional variants, structural
variants, gene-by-gene or gene-by-environment interac-
tions [8–11]. It has also been suggested that multiple
small-effect variants, which are individually undetectable
with the statistical power of GWAS, additively contrib-
ute to the missing heritability [12–14]. Another explan-
ation is that the current estimates of total heritability
may have been significantly inflated by the effects of
epistasis [15]. The search for missing heritability has
witnessed application of various approaches including
pathway-based analysis of common, less frequent, and
rare variants [16–18]; analysis of correlated traits using
summary statistics from GWAS [19]; and analytical
procedures that accommodate mixture of effects on the
traits [20]. Because some of the existing effective phar-
macotherapeutic agents for blood pressure control act
by targeting specific biological pathways and these
pathways are less represented in the GWAS-identified
variants [1, 21–24], analytical approaches that focus on
known biological pathways rather than on the entire
genome could lead to discovery of some of the variants
linked to “missing heritability” in association studies.
Consequently, the main objective of the present study

was to perform pathway-based association analysis to
identify blood pressure phenotypes–associated func-
tional variants in the aldosterone-regulated sodium
reabsorption pathway using whole exome sequence data
provided for Genetic Analysis Workshop 19 (GAW19).
The aldosterone pathway was chosen because it is one
of the known target biological pathways for pharmaco-
logical control of hypertension. We hypothesize that
functional genetic variant in the pathway influences
susceptibility to blood pressure elevation.
Methods
Analyses were based on the unrelated data set of human
whole exome sequence data plus the simulated and real
phenotypes data as provided for GAW19 and described
by Almasy et al [25].

Study subjects and phenotypes
The study samples included 1943 adult Hispanic
subjects, that is, 1021 type 2 diabetes cases and 922
controls from the San Antonio Family Heart Study, San
Antonio Family Diabetes/Gallbladder Study, Veterans
Administration Genetic Epidemiology Study, and the
Investigation of Nephropathy and Diabetes Study family
component (HA) [26–29]; and the Starr County, Texas
(HS) [30, 31] studies. Available study variables included
sex, age, diastolic blood pressure (DBP), systolic blood
pressure (SBP), and use of antihypertensive medication.
Of the 1943 subjects, only 1850 had complete data on
study variables.
We analyzed both the simulated blood pressure phe-

notypes in the “SIMPHEN.1” data set and the real blood
pressure phenotypes in the “T2D-GENES_P1_Hispanic_-
phenotypes” data set. Outcome variables included in the
analysis are DBP, SBP, pulse pressure (PP) (defined as
PP = SBP −DBP), mean arterial pressure (MAP) (defined
as MAP =DBP+[PP/3]), and hypertension (defined as
blood pressure ≥140/90 mm Hg or use of antihyperten-
sive medication). Sex, age, and age-squared were treated
as covariates in the analysis.

Genotype data
Whole exome sequence data were provided on 11 odd-
numbered autosomes. The genotypes used in the present
analysis were based on NALTT (number of nonreference
alleles for each individual thresholded) as provided in
the variant call format (VCF) files. We used the software
BCFtools (http://samtools.github.io/bcftools/bcftools.html)
to extract data on biallelic (single nucleotide and deletion/
insertion) variants and then recoded the genotypes from 0/
1/2 to ACGT using the information on both the reference
and alternate alleles for each variant. The quality control
(QC) of the genotype data was carried out using the
software PLINK [32]. Of the 1,765,688 total available
variants, 1,711,766 were biallelic. We excluded 136,233
variants with missing genotypes greater than 10 % and
1,529,240 variants with minor allele frequency of less than
1 %. Rare variants were excluded because the focus of the
analysis was on common and less-frequent variants and
also because the sample size was too small for single-
variant analysis of rare variants. Another 1238 variants that
failed Hardy-Weinberg equilibrium test at p <0.001 were
excluded. One sample with missing genotypes of greater
than 10 % was excluded. The final quality-controlled
genotype data set was made up of 1942 samples and 45,055
biallelic variants. Principal component analysis was
performed using all 45,055 variants and the first of 10
components was extracted and included in association
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analysis to control for population stratification. Only the
1850 subjects with complete data on blood pressure phe-
notypes were included in association analysis.

Aldosterone-regulated sodium reabsorption pathway
genes
The aldosterone-regulated sodium reabsorption pathway
was defined using KEGG PATHWAY Database (http://
www.genome.jp/kegg/pathway.html). The pathway com-
prises of 39 genes located across 14 autosomes and the X
chromosome. Twenty-two genes were on the 11 odd-
numbered autosomes available for the present analysis
(Table 1). Annotation of variants was done using the
SeattleSeq Annotation (http://snp.gs.washington.edu/Seat
tleSeqAnnotation138/index.jsp). Of the 45,055 biallelic
variants that passed QC, a total of 127 were in the
aldosterone-regulated sodium reabsorption pathway. With
the exception of the SFN gene, each of the 22 genes on
the odd-numbered autosomes had at least 1 variant avail-
able for analysis.

Association analysis
Using the simulated and real phenotypes, we fitted addi-
tive linear (for DBP, SBP, PP, MAP) and logistic (for
hypertension status) regression models for each outcome
Table 1 Aldosterone-regulated sodium reabsorption pathway genes

Gene name Definition

PIK3CD Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subuni

SFN Stratifin

PIK3R3 Phosphoinositide-3-kinase, regulatory subunit 3 (gamma)

ATP1A1 ATPase, Na+/K+ transporting, alpha 1 polypeptide

ATP1A2 ATPase, Na+/K+ transporting, alpha 2 polypeptide

ATP1A4 ATPase, Na+/K+ transporting, alpha 4 polypeptide

ATP1B1 ATPase, Na+/K+ transporting, beta 1 polypeptide

PIK3CB Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subuni

ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subuni

PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

PIK3CG Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subuni

INS Insulin

FXYD2 FXYD domain containing ion transport regulator 2

KCNJ1 Potassium inwardly-rectifying channel, subfamily J, member 1

ATP1B2 ATPase, Na+/K+ transporting, beta 2 polypeptide

PIK3R5 Phosphoinositide-3-kinase, regulatory subunit 5

PRKCA Protein kinase C, alpha

INSR Insulin receptor

PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 (beta)

ATP1A3 ATPase, Na+/K+ transporting, alpha 3 polypeptide

PRKCG Protein kinase C, gamma
variable with the variant as explanatory variable coded
as dosage of the minor allele. Sex, age, age-squared, and
first principal component were included as covariates.
The software PLINK [32] was used for the association
analysis by implementing the set-based tests. All the 127
variants in the pathway were considered as a set. The
test involved iterative steps that included: (a) for each
variant, we determined which other variants were in
linkage disequilibrium above a certain threshold R2 and
eliminated other variants with values above the thresh-
old; (b) performed single-variant association analysis and
selected up to N variants with p values below P, starting
with the most significant one; (c) from the subset of
variants, we calculated set-statistic as the mean of the
single-variant statistics; (d) permuted the data set 5000
times and repeated steps (b) and (c) for each permuted
data set; (e) calculated empirical p value as the number
of times the permuted set–statistic exceeded the original
data set–statistic. Software default values of 0.5, 0.05,
and 10 were used for the parameters R2, P, and N,
respectively. For each outcome variable, haplotype and
epistasis association analyses were also done. The epista-
sis association involved all pairwise combinations of the
127 variants and their interaction. We also performed
Bonferroni correction for multiple testing using number
available in the data set

KEGG Orthology No. Chromosome GRCh38 location

t delta K00922 1 9629889 to 9729114

K06644 1 26863142 to 26864456

K02649 1 46040140 to 46133036

K01539 1 116372180 to 116404774

K01539 1 160115730 to 160143591

K01539 1 160151562 to 160186977

K01540 1 169106709 to 169132722

t beta K00922 3 138652698 to 138834938

K01540 3 141876628 to 141926540

t alpha K00922 3 179148114 to 179235137

K02649 5 68215756 to 68301821

t gamma K00922 7 106865278 to 106908978

K04526 11 2159779 to 2161209

K01538 11 117820075 to 117828092

K04995 11 128838014 to 128867373

K01540 17 7650936 to 7657771

K02649 17 8878916 to 8965712

K02677 17 66302642 to 66810744

K04527 19 7112255 to 7294328

K02649 19 18153178 to 18170533

K01539 19 41966476 to 41994276

K02677 19 53882213 to 53907647

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://snp.gs.washington.edu/SeattleSeqAnnotation138/index.jsp
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Table 2 List of genes with top pathway-based signals for real
and simulated phenotypes

Phenotype Gene (variant) p Value

Unadjusted Bonferroni adjusted

Real phenotypes

DBP PRKCA (rs1010546) 0.0014 0.0291

SBP PRKCA (rs1010546) 0.0015 0.0316

MAP PRKCA (rs1010546 0.0006 0.0117

PP INSR (rs3815902) 0.0130 0.2730

Hypertension PRKCA (rs1010546) 0.0029 0.0624

Simulated phenotypes

DBP PRKCA (rs2227857) 0.0025 0.0528

SBP PRKCA (rs2227857) 0.0009 0.0205

MAP PRKCA (rs2227857) 0.0004 0.0080

PP INSR (rs2860177) 0.0359 0.7549

Hypertension ATP1A4 (rs11265338) 0.0045 0.0953
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of testing as equal to the number of genes in the path-
way. This was based on the assumption of nonindepen-
dence of variants in the pathway genes.

Results
Figure 1 displays the distributions of the single-variant
association analysis for both real and simulated pheno-
types. Table 2 shows the topmost pathway-based associ-
ation signals. After Bonferroni correction for multiple
testing, associations of PRKCA gene with DBP, SBP, and
MAP remained significant in both real and simulated
data. None of the empirical p values reached significant
level. Figure 2 displays the distributions of the haplotype
associations. The haplotype signals are similar to those
of the single variant analysis in Fig. 1. Table 3 shows the
results of the 2-locus epistasis analysis. The most signifi-
cant interactions for real phenotypes were those between
different genes, for example, INS vs. PIK3R2 for DBP,
whereas for simulated phenotypes there were significant
within-genes interactions such as in INSR gene for SBP,
MAP, and hypertension (Table 3).

Discussion
In this study, we explored pathway-based analytical
approach for the discovery of functional variants influen-
cing blood phenotypes as additional method that could
lead to identification of additional variants for complex
human conditions. We focussed on a known biological
pathway rather than pathways constructed from none
proven biological systems. Our hypothesis was that be-
cause existing effective pharmacotherapeutic agents for
Fig. 1 Distributions of single single-nucleotide polymorphism association s
blood pressure control act by targeting specific biological
pathways, appropriate analytical methods that focus on
such pathways could lead to identification of additional
variants linked to complex human conditions than
currently discovered by GWAS and candidate gene
approaches. Results from this analysis indicate that,
indeed, the use of known biological pathways for genetic
association analysis can be a useful approach in the
presence of true association since it takes advantage of
the nonindependence of variants across pathway genes
ignals for real phenotypes (top) and simulated phenotypes (bottom)



Fig. 2 Distributions of haplotype association signals for real phenotypes (top) and simulated phenotypes (bottom)
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for setting threshold for statistical significance. We do
note that because our analysis included genes from only
the odd-numbered autosomes provided for GAW19,
these results and their interpretations cannot be taken as
fully representative of the aldosterone pathway. We are
of the opinion that pathway-based analysis of variants
from all genes in the pathway with those from the regu-
latory regions would lead to identification of important
associations that can be interpreted with less limitation
than in the present study. The use of known biological
pathways in this study represents useful extension of
genetic association analysis for complex human diseases.
Table 3 List of loci with most significant epistasis signals for
real and simulated phenotypes

Phenotype Locus 1 Locus 2 p Value

Real phenotypes

DBP INS (rs5506) PIK3R2 (rs1011320) 0.0002169

SBP INSR (rs3745548) PRKCG (rs3745405) 0.0002839

MAP INSR (rs3745548) PRKCG (rs3745405) 0.0001629

PP PIK3CD (rs28730674) PIK3R1 (rs61749601) 0.0000746

Hypertension PIK3CD (rs11121484) ATP1B2 (rs1642763) 0.0004479

Simulated phenotypes

DBP PIK3R1 (rs3730089) INSR (rs78312382) 0.0001178

SBP INSR (rs6413502) INSR (rs3815902) 0.0000232

MAP INSR (rs6413502) INSR (rs3815902) 0.0002596

PP PIK3R3 (rs75775922) PIK3CA (rs3729682) 0.0001188

Hypertension INSR (rs2860177) INSR (rs7252268) 0.0004135
Conclusions
The findings from this study show that pathway-based
analytical approaches can be useful in identification of
important disease-associated variants that are otherwise
undetectable by GWAS because of the assumption of
nonindependence of variants within and across pathway
genes which leads to reduced penalty of multiple testing
and thus less stringent statistical significance threshold.
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