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Abstract

The aggregation of functionally associated variants given a priori biological information can aid in the discovery of
rare variants associated with complex diseases. Many methods exist that aggregate rare variants into a set and
compute a single p value summarizing association between the set of rare variants and a phenotype of interest.
These methods are often called gene-based, rare variant tests of association because the variants in the set are
often all contained within the same gene. A reasonable extension of these approaches involves aggregating
variants across an even larger set of variants (eg, all variants contained in genes within a pathway). Testing sets of
variants such as pathways for association with a disease phenotype reduces multiple testing penalties, may increase
power, and allows for straightforward biological interpretation. However, a significant variant-set association test
does not indicate precisely which variants contained within that set are causal. Because pathways often contain
many variants, it may be helpful to follow-up significant pathway tests by conducting gene-based tests on each
gene in that pathway to narrow in on the region of causal variants. In this paper, we propose such a multistep
approach for variant-set analysis that can also account for covariates and complex pedigree structure. We
demonstrate this approach on simulated phenotypes from Genetic Analysis Workshop 19. We find generally better
power for the multistep approach when compared to a more conventional, single-step approach that simply runs
gene-based tests of association on each gene across the genome. Further work is necessary to evaluate the
multistep approach on different data sets with different characteristics.
Background
As next-generation sequencing prices decrease, the de-
mand for statistical methods to interpret the wealth of
new data generated by this technology has risen dramatic-
ally. The field is now moving past single-marker tests of
association for common variants using genome-wide asso-
ciation studies, instead expanding the search to include
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rare variants. The analysis of rare variants presents unique
statistical issues, such as very low power and high multiple
testing penalties for single-marker association tests. In re-
cent years numerous methods have been developed that
aggregate rare variants into sets, often genes, and run a
gene-based test of association to compute a single p value
for the entire gene. These methods reduce multiple testing
penalties and have been shown to increase power in detec-
tion of rare variants [1–4].
Gene-based tests of association, while successful in

identification of genes with moderate to strong effect
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Table 1 Settings for creation of synthetic pathways

Number of genes 5 10 Total

Percent Causal 20 40 60 100 20 40 60 100

Number of pathways 15 11 10 5 15 11 10 5 82

Genes were randomly sampled without replacement and placed into sets of
genes, or pathways, of varying sizes. The percent of genes in the pathway
containing at least 1 causal variant also varied across sets
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sizes, cannot always detect genes with weak effect sizes.
Because of multiple testing penalties and lower power to
detect genes with weak effects, these genes will often go
undetected [5]. By aggregating genes into functionally
associated gene sets, or biological pathways, we can
reduce the number of tests needed to analyze all the
information and, thus, decrease multiple testing penal-
ties. Testing pathways for association with a phenotype
of interest may also increase power by aggregating inde-
pendent associations across a set of genes. In addition,
the pathway-based association testing approach allows
for the incorporation of biological information and a
straightforward, biological interpretation.
Traditional pathway-based association testing involves 2

stages: (a) generate statistics for each gene in a pathway,
and (b) aggregate separate gene-level statistics into a sin-
gle statistic for the pathway [6]. More recently, single-
stage association tests have been developed. These ap-
proaches are similar to gene-based tests of association in
that they group variants into sets and compute a single
statistic for the entire pathway. Some groups have consid-
ered direct application of tests originally designed as gene-
based tests as single-stage pathway tests [6]. Prior research
suggests that single-and 2-stage pathway-based associ-
ation tests will each be optimal under distinct genetic ar-
chitectures [6].
Although pathway-based association tests can offer

improvements in power for detecting association with
phenotypes of interest, a significant pathway-based asso-
ciation test does not indicate which of the variants or
genes within that pathway are associated with the
disease status. Recently, Juraeva et al. [5] proposed a
multistep approach for variant-set analysis to address
this limitation (first Global Test [7] to identify pathways,
then FORGE [Functional element Overlap analysis of
the Results of Genome Wide Association Study Experi-
ments] [8] to identify potentially causal genes). However,
the Juraeva et al. method has some limitations: (a) it
requires a replication data set, (b) is limited in the
choice of test statistic at the gene or pathway level, and
(c) is not directly applicable to family-based studies.
Family-based studies have many advantages, including
potentially increased power in rare variant identification
[9]. Unfortunately, most pathway-based association
methods are unable to directly account for complex ped-
igrees [10, 11] or cannot account for covariates [9, 12].
In this paper, we propose a novel approach to address

existing limitations. In particular, we propose a multistep
pathway-based association test for family-based data on
complex pedigrees. For the first step we apply a single-
stage pathway-based test of association and for the
second step we apply commonly-used gene-based test of
association to each gene in a significant pathway. We com-
pare our proposed multistep approach to the performance
of two commonly used gene-based tests of association (also
adapted for family data). In particular, we evaluate the
power and type I error of the single- versus multistep
association testing approaches using simulated data on
blood pressure from Genetic Analysis Workshop 19
(GAW19). We show that our proposed multistep testing
approach offers improvements in power, further motivating
the application of pathway-based tests of association.
Methods
Data description
GAW19 provided genome sequence data (for odd-
numbered autosomes), simulated phenotypes, and covar-
iates for 849 individuals from large Mexican American
families [13]. Systolic blood pressure (SBP), diastolic
blood pressure (DBP), hypertension status, sex, age,
smoking habits, and blood pressure medication informa-
tion is provided at each of 3 examination periods in the
simulated data. The simulated data was used in this
analysis in order to evaluate type I error and power. To
account for the effect of blood pressure medication on
blood pressure levels, we made a standard adjustment by
adding 10 mmHg and 5 mmHg to the SBP and DBP
measurements, respectively, for subjects taking blood
pressure medication at each examination [14, 15]. We
also calculated the mean arterial pressure (MAP), our
response variable of interest, for each individual using
the standard formula (MAP = 2/3 DBP + 1/3 SBP). To
collapse longitudinal phenotype and covariate informa-
tion, average age, SBP, DBP, and MAP were calculated
and smoking habit was collapsed into a binary variable for
whether the subject smoked at least once during the 3
examination periods.
Creation of sets of variants (genes and pathways)
Variants were mapped to 10,090 genes using a custom
version of ANNOVAR (Annotate Variation) [16]. Genes
were randomly assigned to 1 of 1346 mutually exclusive
sets of genes, which we treat as pathways. These
synthetic pathways vary in size and percent of genes that
contain at least 1 causal variant. In particular, 82 path-
ways contain at least 1 of the 245 causal genes. These 82
pathways and 245 genes are the focus of our analysis.
Table 1 has more details.
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Statistical tests
We identified 2 commonly used gene-based tests of
association [17] that account for complex pedigree struc-
ture, a quantitative response variable, and are easily
implemented using a published R package. One of these
methods is a sequence kernel association test (SKAT)–
like, or variance component, test of association and the
other method is a burden test in the spirit of Combined
Multivariate and Collapsing (CMC). Hereafter, we refer
to these methods as VCtest and Burdentest. VCtest is a
weighted sum of single-variant score tests computed as
∑j = 1
m wjUj

2, where j = 1,…, m is an index across m
variants, wj is a weight, and Uj is the score statistic for
the association between phenotype and variant j. The
skatMeta function was used with default (beta) weights.
Burdentest regresses the phenotype on a weighted sum of
genotypes within each set by computing ∑j= 1

m wjUj. The bur-
denMeta function was used with default weights (wj = 1).
Both VCtest and Burdentest test for association between a
quantitative trait and sets of rare variants, while also ac-
counting for covariates. It should be noted that both tests
employ a theoretical, rather than empirical, estimation of
the kinship matrix.
Application of tests
We applied VCtest and Burdentest to the GAW19 data in
2 distinct ways.
Single-step approach
We applied both a SKAT-like [3] (VCtest) and a CMC-like
[4] (Burdentest) to all 245 genes containing at least 1 causal
variant as implemented in a publicly available R package
[17]. These gene-based approaches test the null hypothesis
that no variant contained within the gene is associated
with the disease phenotype (in our case, MAP).
Multistep approach
First, VCtest was applied to each of the 82 pathways,
treating the pathways as very large sets of variants to test
if the pathway shows evidence that at least 1 variant is
associated with the phenotype. For each pathway flagged
as significant, we then apply VCtest to each gene within
the pathway, separately, in order to identify significant
genes within the pathway. This combination of tests is
referred to in the remainder of the paper as the VCtest-
VCtest approach. We also looked at 3 other combination
of tests: VCtest at the pathway level, followed by Burdent-
est at the gene level (VCtest-Burdentest); Burdentest at the
pathway level, followed by VCtest at the gene level (Bur-
dentest-VCtest); and Burdentest at both the pathway and
gene level (Burdentest-Burdentest).
Estimation of power and type I error
To get empirical estimates for power and type I error of
each method, tests were run on each of the 200 simu-
lated phenotypes provided by the GAW19 organizers.
For the single-step approach, power of the gene-based
tests on a particular causal gene is estimated as the pro-
portion of the 200 simulated phenotypes for which that
gene is significant (significance levels discussed below).
For the multistep approach, we first report a similar

empirical estimate for power of the pathway-based tests:
the proportion of the 200 simulated phenotypes for
which a pathway containing at least 1 causal gene
(causal pathway) is significant. We also report the
proportion of times a causal gene and the pathway in
which it is contained are both significant.
Type I error estimates are calculated very similarly.

Estimates are achieved by running tests with the variable
Q1 as the response. Q1 was simulated by the workshop
organizers so as to not be associated with any genes, so
we can estimate type I error as the proportion of the
simulated phenotypes for which a gene or pathway is
significantly associated with Q1.
Initially, we evaluate significance using conventional

genome-wide association study alpha levels that penalize
for multiple testing: 10−6 for single-step approach gene-
based tests, 5 × 10−4 for multistep approach pathway
tests, and 0.05 divided by the number of genes within
each pathway for multistep approach gene-based tests.
Because of very low observed power with these conser-
vative significance levels (see “Results” below for details),
we also consider more liberal alpha levels (0.005 for the
single-step approach gene tests, 0.05 for multistep
approach pathway tests, and 0.05 for multistep approach
gene tests) to facilitate identification of causal variant-sets.

Results
Single-step approach: power and type I error of gene-
based approach
Using a conventional genome-wide association study
alpha level that corrects for multiple testing across all
genes (10−6), we find that both VCtest and Burdentest are
severely underpowered on this data set. Only 1 gene,
MAP4, which has the strongest effects on SBP and DBP
in the GAW19 simulated data, has reasonable power
(0.7), and nearly all other genes containing causal
variants have little to no power (detailed results not pro-
vided). When a more liberal alpha level is used (0.005),
power increased above the nominal type I error rate for
many genes (detailed results not shown). The top 2 most
powerful genes for VCtest were MAP4 (VCtest and Burdentest
power = 1) and SCAP (VCtest power = 0.97, Burdentest
power = 0), while the top 2 hits for Burdentest were MAP4
and FLT3 (Burdentest power = 0.31,VCtest power = 0). Mod-
est power for these and a handful of other genes containing
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causal variants was not at the expense of control of the type
I error rate. In particular, Q1 (a simulated variable not asso-
ciated with genotypes useful for assessing type I error rates)
yielded a well-controlled type I error rate (VCtest Mean =
0.003; SD = 0.004; Burdentest Mean = 0.006, SD = 0.006)
across the 245 genes containing at least 1 causal variant.

Multistep approach: power and type I error of pathway-
based approach
First step: pathway-based association tests
Both variant-set association tests (VCtest and Burdentest)
are also severely underpowered at the pathway level
when we use a conventional genome-wide association
study alpha level (5 × 10−4) (detailed results not pro-
vided). When a more liberal alpha level is used (0.05),
power increased dramatically, and type I error was con-
trolled at the nominal level (detailed results not shown).
The top hits are a pathway of 10 genes, 6 of which are
causal (Burdentest power = 0.67); a pathway of 5 genes,
all causal and containing MAP4 (Burdentest power = 0.605);
a pathway of 5 genes, 3 causal (Burdentest = 0.51); and a
pathway with 10 genes, 6 causal (VCtest power = 0.46).
When considering the likelihood that a gene would be con-
tained within a pathway determined to be significant, most
genes would be at least as likely to be identified if a pathway
based test of association was used (Burdentest: 94.3 % = 231/
245; VCtest: 97.1 % = 238/245), with average gains of 9.1 %
percentage points (Burdentest) and 5.6 % (VCtest),
respectively. Figure 1 plots the power of gene-based tests of
association versus power of the pathway test for each of the
245 genes.
Fig. 1 Comparison of power for pathway and gene-based tests. a. The pow
the corresponding pathway that contains that gene. Blue dots (above the l
the gene power. b. This is the same setup as A, except it shows the power
corresponding pathway. In general, pathway tests are more powerful than
Power comparisons in the previous paragraph benefit
both from a larger significance level (0.05 vs. 0.005) and
some lack of granularity in what the results tell the
researcher (pathway significance vs. gene significance).
In particular, Step 1 does not indicate which variant (s)/
gene (s) are significant within the pathway. In the next
section, we explore power results considering Step 2 of
the multistep approach.
Second step: gene-based association tests
A more direct power comparison involves comparison
of the joint power (both Step 1 [pathway] and Step 2
[gene] are significant) of the pathway test with a
gene-based test, computed only when the pathway test is
significant (and using a significance level of 0.05). Even
with this consideration, for many genes, the multistep
approach offers higher power than conventional single-
step gene-based tests. For example, 206 of 245 genes
(84.1 %) show power at least as good with the multistep
approach as compared to the single-step approach (aver-
age power gains of 1.2 %) when comparing the Burdentest-
Burdentest approach to a single-step Burdentest at the gene
level. Results were similar for using VCtest-VCtest com-
pared to single-step VCtest (210 genes with at least as good
of power using the multistep approach (85.7 % of genes),
with average power gain of 8.4 %). Figure 2 summarizes
the power differences between multistep and single-step
approaches across all 245 causal genes. We note that con-
ducting the same test at the second step as was conducted
at the first step is generally a more powerful approach
er of VCtest for each gene is shown, as well as the power of VCtest for
ine y = x) represent genes for which the pathway power is higher than
of Burdentest for each gene compared to the power of Burdentest for its
gene-based tests



Fig. 2 Comparison of power for multistep and conventional approaches. a. Comparison of power at each gene for multistep VCtest-VCtest versus
the single-step VCtest approach, with significance evaluated at alpha levels of 0.05 and 0.005, respectively. The red points are genes for which the
single-step approach has higher power (below the line y = x) and the blue points are instances where our multistep approach has higher power
(above the line y = x). There are quite a few instances when the multistep approach offers relatively large improvements in power compared to
the single-step gene-based test. b. Comparison of power for Burdentest- VCtest versus VCtest. c. Comparison of power for VCtest-Burdentest vs. Burdentest.
d. Comparison of power for Burdentest-Burdentest versus Burdentest. Notice again that there are many instances where the multistep approach
offers improvements in power over the single-step gene-based test. Overall we see that our method outperforms the single-step tests by a larger
amount, on average, when the first and second step are consistent (VCtest-VCtest and Burdentest- Burdentest)

Table 2 Comparison of power for genes showing at least a 10 percentage point increase in power for multistep pathway analysis

Gene name Pathway description Single-step power Multi-step power

Number of genes Percent Causal VCtest Burdentest Burdentest-Burdentest Burdentest-VCtest VCtest-VCtest VCtest-Burdentest

EPS8L1 5 60 % 0.010 0.170 0.560 0.015 0.010 0.005

FLNB 5 60 % 0.000 0.140 0.480 0.035 0.035 0.040

COL5A3 10 60 % 0.000 0.095 0.405 0.050 0.020 0.005

CASP5 10 60 % 0.090 0.000 0.000 0.000 0.255 0.000

SNAPC3 10 60 % 0.005 0.000 0.000 0.000 0.130 0.005

C21orf33 10 60 % 0.025 0.010 0.105 0.135 0.010 0.000

TNN 5 100 % 0.035 0.010 0.055 0.140 0.085 0.005

Power for genes, as well as characteristics of the pathway they are contained in. Bolded entries represent the largest power achieved by each of the methods
(single-step and multistep). In each of these scenarios, the multistep approach offers anywhere from a 10 to 40 % increase in power over the conventional
single-step approaches
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(Fig. 2). A type I error analysis showed overly conservative
type I errors for the multistep approach.
Table 2 provides the power of different methods for

the genes showing the largest power gains (at least 10
percentage points) when using the multistep pathway
approach proposed here (details not shown). We note
that the power gain for these genes is not typically a
result of being in a pathway with another gene that,
alone, is very powerful. For example, EPS8L1 is in a
pathway with 4 other genes. All 4 other genes have
power less than 1 % for both Burdentest and VCtest

conducted at the gene level. The power gain is realized
through a combination of multiple causal genes/variants
and reduced significance level.

Discussion
We propose a general framework for conducting pathway
analysis on family-based data for rare variants. Current
pathway-based and gene-based variant-set testing methods
are severely underpowered using standard genome-wide as-
sociation study significance levels on this data set. However,
when more liberal significance levels are used, the novel
multistep approach proposed here shows generally increased
power over conventional single-step testing approaches. We
notice even larger improvements in power when we follow
up a pathway test with a similar gene-based test (VCtest-
VCtest and Burdentest-Burdentest). This makes sense when we
consider that in these cases the genetic architecture (eg, sig-
nal) being looked for at both stages is the same. We antici-
pate seeing similar patterns on other data sets with better
power and using standard significance levels, though appli-
cation of the proposed methods to other data sets is neces-
sary to confirm this.
Importantly, if current methods were modified to provide

better control of the multistep type I error rate (instead of
being overly conservative) it is possible that the difference
in the power of 2 methods would be even greater. However,
it is important to note that multistep type I error and power
will always be less than or equal to single-step type I error
if the same significance level is used in both cases. However,
typically, different significance levels will be appropriate as
the number of genes under consideration is typically more
than the number of pathways.
Our current work is limited in a number of ways

including: (a) It was evaluated on a single data set with sim-
ulated phenotypes, (b) it only uses single-stage pathway as-
sociation tests (single test of all variants in a pathway
instead of testing each gene first, and then aggregating; see
Introduction for details), (c) it incorporates common vari-
ants instead of excluding them, (d) it uses a theoretical kin-
ship matrix, and (e) it only evaluates method performance
using synthetic pathways. These are all areas for further re-
search, but would not be difficult to incorporate into the
current, flexible framework of our approach.
Finally, there were a handful of cases where the
single-step (gene-based approach) was better than the
multistep approach. This was generally when pathways
contained very few other causal genes and/or causal
genes with small effect sizes. Consideration of multistep
methods that are more robust to the inclusion of
noncausal genes may help limit potential power loss in
these cases. Further work is necessary.

Conclusions
A novel multistep pathway approach showed improved
power versus single-step approaches for most genes across
a wide variety of scenarios. Further work is needed to
evaluate the robustness of these findings across a wider
range of complex disease architecture.
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