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Abstract
Data for Problem 3 of the Genetic Analysis Workshop 15 were generated by computer simulation
in an attempt to mimic some of the genetic and epidemiological features of rheumatoid arthritis
(RA) such as its population prevalence, sex ratio, risk to siblings of affected individuals, association
with cigarette smoking, the strong effect of genotype in the HLA region and other genetic effects.
A complex genetic model including epistasis and genotype-by-environment interaction was applied
to a population of 1.9 million nuclear families of size four from which we selected 1500 families with
both offspring affected and 2000 unrelated, unaffected individuals all of whose first-degree relatives
were unaffected. This process was repeated to produce 100 replicate data sets. In addition, we
generated marker data for 22 autosomes consisting of a genome-wide set of 730 simulated STRP
markers, 9187 SNP markers and an additional 17,820 SNP markers on chromosome 6. Appropriate
linkage disequilibrium between markers and between trait loci and markers was modelled using
HapMap Phase 1 data http://www.hapmap.org/downloads/phasing/2005-03_phaseI/. The code base
for this project was written primarily in the Octave programming language, but it is being ported
to the R language and developed into a larger project for general genetic simulation called
GenetSim http://genetsim.org/. All of the source code that was used to generate the GAW 15
Problem 3 data is freely available for download at http://genetsim.org/gaw15/.
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Background
The plan for this data simulation was to mimic the epide-
miology and familial pattern of rheumatoid arthritis (RA),
a complex genetic disease with several loci contributing to
susceptibility. We took into account the following facts
about RA epidemiology when choosing parameters for
the simulation. The lifetime morbid risk of RA is roughly
1%, but risk in women is about triple the risk in men.
Severity of illness is variable in RA but age of onset is only
weakly related to disease severity and mortality is only
slightly increased in RA. The risk to siblings of affected
people is about five to ten times the risk in the general
population, which suggests some genetic influence, and
we know that the contribution of variation at HLA-DRB1
(OMIM: 142857) on chromosome 6 is extraordinarily
strong and well established. In terms of environmental
contributors to risk, we know that cigarette smoking is
positively associated with RA. Two quantitative traits
measured from serum, anti-cyclic citrullinated peptide
(anti-CCP) and immunoglobulin M (IgM), are often ele-
vated in RA. Much more is known about RA, but we
focused our simulation on the features of the illness and
its covariates listed here. Anything else that was known
about RA genetics was ignored and we created a genetic
model that we hoped would provide interesting data for
Genetic Analysis Workshop participants.

In the simulation of trait loci and genetic marker data for
linkage studies, it is very difficult to provide an appropri-
ate model of linkage disequilibrium (LD) between loci,
including both markers and trait loci. In many earlier
GAW simulations, interest was primarily in linkage analy-
sis and it was acceptable for all loci to be in linkage equi-
librium. Interest today has shifted much more to
association analyses using large numbers of single-nucle-
otide polymorphism (SNP) markers. For simulated
genetic data to be useful, the simulation must include an
appropriate LD model. Our approach was not to model
LD explicitly but to use real SNP haplotype data from the
HapMap project to provide appropriate local LD patterns.
By recombining HapMap haplotypes in a realistic way, it
is possible to produce large numbers of different chromo-
some-long haplotypes that retain the LD pattern of the
original HapMap data over short intervals (i.e., <1 cM)
but show much more haplotype diversity over longer
intervals (e.g., 20 cM) than is observed in HapMap
because of HapMap's limited sample size (120 haplotypes
per ethnic group). In our simulation, every allele, whether
marker allele or trait-locus allele, has an ancestral origin
on one of the 120 CEPH European (CEU) HapMap hap-
lotypes and this ancestry is what determines local LD pat-
terns.

Methods
Errors in the Problem 3 data
After GAW15 participant manuscripts had been submit-
ted for publication we discovered that there were several
small errors in the Problem 3 simulation, none of which
were noticed by participants. These errors were mostly
trivial mistakes in the positions of some markers and trait
loci and in the heterozygosities of the STRP markers. We
present the simulation parameters below as they were pre-
sented to the GAW participants, but we note with asterisks
any values that turned out to be incorrect and we then
present the correct values. The most important error was
in the positioning of Locus D relative to Locus DR/C: We
intended for there to be only a 5 cM distance between
those two loci on the sex-averaged map, but due to an
error in the code for generating recombination in that
region, the interval was roughly doubled to about 10 cM.
This error should have almost no effect on association
analyses because LD patterns were not affected. Marker
order was always presented correctly. Another way to con-
ceptualize the problem is that some of the map locations
were presented incorrectly but the data were otherwise
correct. All of our source code and other information
about the Problem3 data is freely available at http://genet
sim.org/gaw15/ so that the simulation process can be
studied in detail by any interested reader. None of the
software used in this project is proprietary or unavailable.

Overview of the simulation process
We used a two-stage simulation process in which the first
stage consisted of generating a large population of fami-
lies with affection status, and the second stage consisted of
generating full data for a much smaller number of fami-
lies, selected based on affection status. Both stages were
repeated 100 times to produce 100 replicate data sets.

Stage 1
We generated a large population of 1.8 million nuclear
families, each consisting of two parents and two offspring,
with RA affection status determined by the complex
genetic/environmental model described below. At this
stage of the analysis we generated for every family only the
variables that were needed to determine affection status.
These variables included age, sex, smoking status, IgM,
and the trait loci described below. We did not determine
patterns of recombination at this stage except in the
regions between pairs of trait loci that were on the same
chromosomes nor did we generate any marker data. For
trait loci, we determined both the alleles and the HapMap
haplotypes from which those alleles were derived. It was
necessary to retain that haplotype data so that we could
generate markers in LD with the trait loci in the second
stage of the simulation process.
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Stage 2
From the large population of families generated in Stage
1, we retained a random sample of 1500 families with an
affected sibling pair (ASP) and we retained a random sam-
ple of 2000 control families in which none of the four
members were affected. We then generated for the selected
families all data, including marker data, that had not been
generated in the first stage of the simulation. Use of this
tactic required that the second stage of simulation was
conditional on the results of the first stage. All 22 human
autosomes were simulated. Information about the marker
data is given below.

Data files
We present data on phenotypes and marker genotypes for
all members of the 1500 ASP families and on one ran-
domly selected offspring from each of the 2000 unaffected
control families (i.e., there are 2000 unrelated control
subjects per replicate, and no control subject had a first-
degree relative with RA). Those data were shared with all
GAW15 participants who requested Problem3 data, and
for those participants who requested the answers, we also
made available all trait-locus genotypes and latent traits
that were used to generate observed quantitative traits.

Major gene effects
Table 1 summarizes the trait locus positions and provides
a brief description of the effects of all nine major genes.
Much of this information is also displayed in Figure 1.
More detailed explanations of these effects follow imme-
diately below.

Hazard and risk
The model uses a constant hazard function to determine
risk of RA. We planned at first to determine age at onset
according to this exponential survival model, but it turned
out that age of onset was then too strongly linked to some
loci. We then retained the hazard approach but gave every
individual the same risk period and the same "base haz-
ard" (exponentiated intercept term). Therefore, multiply-

ing hazard by some value is equivalent to multiplying risk
by that value and the terms "risk" and "hazard" are used
somewhat interchangeably below. Once hazard was
known for a subject, we used the hazard to determine the
mean of an exponential random variable. If this variable
was less than a fixed threshold value (i.e., within the risk
period), the subject was affected. The values of the base
hazard and threshold are arbitrary, but they jointly deter-
mine population prevalence. Also see the section "RA
affection status" under "Modeling phenotypes" below.

HLA-DR and Locus C
We imitated the HLA-DRB1 locus and its effects some-
what but not in great detail. We will refer to our simulated
locus as "DR". Our model includes three DR alleles. DR is
in strong LD (multi-allelic D' = 1.0) and complete linkage
(0 recombination fraction) with Locus C. DR effects are
independent of locus C effects, but DR effects are epistati-
cally controlled by Locus A. In females only, each C allele
increases risk by a factor of 2.1 (female risk of RA is mul-
tiplied by 2.1 for the Cc genotype and by 4.41 for the CC
genotype). Females with no C alleles (cc) have no
increased risk. The allele frequency for C is 0.5. DR/C hap-
lotypes are shown in Table 2.

HLA-DR and Locus A
Locus A affects the impact of HLA-DR types in a dominant
fashion. Individuals with Aa or AA genotypes have their
hazard multiplied by a value that is determined by their
DR type according to the "Risk Multipliers" (Table 3). A
value of 1 indicates no change in risk. The allele frequency
for A is 0.3 (thus the "aa" genotype has frequency 49%
and "A_" has frequency 51%).

Locus B
In smokers only, Bb or BB genotype multiplies RA risk by
1.5. This has the effect that smokers have no directly
increased risk if their genotype is bb, but they still have
some indirectly increased risk through the effect of smok-
ing on IgM. The allele frequency for allele B is 0.35.

Table 1: Effects of major genes

Locus Chr cM Trait locus effect

DR 6 49.4556 Affects directly the risk of RA
A 16 26.2879 Controls effect of DR on RA risk
B 8 170.9087 Controls effect of smoking on RA risk
C 6 49.4556 0 cM from DR, increases RA risk only in women
D 6 54.5717a 5.12a cM from DR, rare allele increases RA risk 5-fold
E 18 94.2729 Controls effect of DR on anti-CCP and increases RA risk
F 11 115.2864 QTL for IgM
G 9 49.3955 2 cM from Locus H, is 25% QTL for severity
H 9 51.4134a 2 cM from Locus G, is 25% QTL for severity

aThese incorrect positions were reported to GAW participants. The correct positions are for Locus D: 59.4756 cM, 10.02 cM from Locus DR/C, 
and for Locus H: 51.2555 cM which is 1.86 cM from Locus G.
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Locus D
Locus D has a direct effect on RA risk but a low allele fre-
quency. Each D allele multiplies hazard by 5. The D allele
frequency is only 0.0083 (exactly 1/120; so DD homozy-
gotes are very rare).

Locus E
This locus has a strong direct effect on RA hazard, multi-
plying by 2.2 for each E allele (2.2 for Ee and 4.84 for EE).
Locus E also affects anti-CCP by controlling which DR
genotypes place a subject in the "high-mean" anti-CCP
group (see also the anti-CCP section below). For DR4
homozygotes only, having one or more E alleles puts
them in the group with a high mean anti-CCP level. Thus,
the high-mean group for anti-CCP consists entirely of
DR4 homozygotes with either Ee or EE genotypes. The fre-
quency of the E allele is 0.25.

Locus F
An additive effect of locus F causes 30% of the variance in
IgM. Mean values of IgM are proportional to number of F
alleles. The frequency of the F allele is 0.5.

Loci G and H
These two diallelic loci have allele frequencies of 0.1 and
0.2, respectively, and each contributes an additive genetic
effect that accounts for 25% of the variance of latent sever-
ity (a total of 50% jointly). These loci are about 2 cM apart
on chromosome 9, but they are not in LD. Thresholds on
latent severity are used to produce observed severity.

Modeling phenotypes
Age
Ages for pairs of siblings were drawn from a bivariate nor-
mal distribution having parameters similar to pairs of
affected siblings in real RA data we were given (rho =
0.855, SD = 11.51, mean = 54.60), but pairs were retained
only if both ages were between 18 and 87. The mother's
age at the birth of the oldest sibling was uniformly distrib-
uted between 20 and 30 years and the father's age was
equal to the mother's age plus a triangular random varia-
ble with a range from -1 to 5 and a mean of 2. This kept
all ages reasonable and within acceptable ranges. The age
reported for deceased individuals is the age they would
have been at ascertainment of their oldest child, if they
had lived. Age at death is also reported for deceased par-
ents.

Table 3: Average DR risk for RA (across Locus A genotypes)

DRX DR1 DR4

DRX 1 1 5
DR1 1 1.5 6
DR4 5 6 30

Average DR risk multipliers
DRX 0.8 1 1
DR1 1 6 6
DR4 1 6 2

DR risk multipliers for aa genotype: 49% frequency
DRX 1.11359 1 5
DR1 1 0.42254 1.69014
DR4 5 1.69014 19.86755

DR risk multipliers for Aa or AA genotype: 51% frequency
DRX 0.89087 1 5
DR1 1 2.53521 10.14085
DR4 5 10.14085 39.7351

The model for the GAW15 Problem 3 genetic simulationFigure 1
The model for the GAW15 Problem 3 genetic simu-
lation. Genetic loci are represented as ovals, normally-dis-
tributed polygenic/environmental variables are represented 
as circles (G, additive polygenic; C, common family environ-
ment; E, non-shared environment) and observed variables 
are represented as rectangles. The RA hazard is a continuous 
variable that is dichotomized into affected/unaffected before 
it is observed, and severity is polytomized into five levels 
before it is observed. Arrows indicate where effects of varia-
bles are manifested. For example, HLA-DRB1 affects both 
anti-CCP levels and RA hazard, but the strength of its effect 
on anti-CCP is controlled by Locus E genotype and the effect 
of HLA-DRB1 on RA hazard is controlled by Locus A geno-
type.  The incorrect cM locations for Loci D and H are given, 
see the note on Table 1.

Table 2: DR/C haplotype frequencies (showing LD)

C c

DR4 0.2500 0.0000 0.25
DR1 0.1000 0.0000 0.1
DRx 0.1500 0.5000 0.65

0.5000 0.5000 1

Multiallelic: D = 0.15, D' = 1.0.
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Sex
The sex of offspring was determined by age from pub-
lished census data on sex ratio by age.

Death and age of death
All offspring are living. The variable "dead" has value 1 for
parents who were deceased at the time of ascertainment,
and value 0 for parents who were living. A parent was
determined to be dead based on 2002 Centers for Disease
Control (CDC) mortality statistics for 10-year age classes.
We applied a constant hazard within all but the oldest age
group and started at the age of the parent when the young-
est child was born. In the oldest age group (85 to 100
years), the density for age at death had a linear form with
the mode at 85 and zero density at 100, limiting longevity
to age 100. We present data for dead parents as if they
were alive. Age at death is provided. RA has a small mor-
tality effect. The age of death for affected parents is on
average 2 years (symmetrical triangular distribution with
endpoints 0, 4) earlier than expected.

RA affection status
Affection was determined by taking a fixed threshold on
an exponential random variable (values below threshold
were affected). The mean of the exponential random vari-
able (reciprocal of the hazard) was determined by multi-
plication of risk factors. More precisely, the log-hazard
was modeled as a linear function of risk factors and the
individual exponential mean was 1/exp(log-hazard). This
is a proportional hazards model with constant hazard and
fixed follow-up time. Mortality and age were ignored in
determining affection status. Variables and parameters
that determined hazard are described below.

Smoking status
This was based on an age-dependent threshold model. A
normal (0,1) random variable was generated for every
subject such that variance was due to additive polygenic
(50%), shared environmental (40%), and non-shared
environmental (10%) influences. These numbers were
based on results of a published twin study. Parents were
genetically independent. Thresholds were determined by
age according to CDC data so that individuals whose nor-
mal value exceeded a threshold were considered to be life-
time smokers at a probability appropriate for their age.

IgM
We generated a latent IgM value from a normal mixture
with means determined by Locus F. Variance in latent IgM
is caused by smoking status (24%), additive effect of
Locus F (30%), and a residual (46%), with the residual
variance being divided between additive polygenic
(60%), and non-shared environmental (40%) compo-
nents. The IgM latent variable was transformed monoton-
ically to fit the distribution of IgM in real RA data.

Anti-CCP
Locus E and HLA-DR genotype jointly created 10.3% of
the variance in anti-CCP as described in the "Locus E" sec-
tion above. The remaining variance was caused by addi-
tive polygenic (60%), and non-shared environmental
(40%) components. The anti-CCP latent variable was
rank rescaled using the observed distribution of values in
the RA reference data to create the final anti-CCP values.

Severity
Severity was determined by two diallelic loci (G and H,
allele frequencies of 0.1 and 0.2, respectively) with addi-
tive effects. Each of the loci accounts for 25% of the total
variance. The remaining variance (50%) is due to an indi-
vidual random environment effect. There are 5 severity
classes, each containing 20% of the affected persons.

Age of Onset
The age of onset (for affected offspring) was created from
an "onset" latent variable that equally weighed the haz-
ard, latent severity, and an independent random variate.
This variable was converted to ranks and used with real RA
data to derive a "proportion of life affected," which multi-
plied by the ascertainment age, yielded the age of onset.

Residual effect
There is a residual effect on the log-hazard for RA that is
composed of shared environment effect (85% of variance)
and a non-shared environment effect (15%). The shared
environment effect is a constant multiple of a Bernoulli-
distributed random variable and it is shared by all mem-
bers of a family in 30% of families. The non-shared envi-
ronment effect was normally distributed. The convolution
(sum of the two variables) was a normal mixture with a
standard deviation of 2.079.

Summary of key covariate effects
Smoking
Smoking affects RA risk both directly with Locus B moder-
ation and through its effect on IgM.

Age
Age affects RA risk through its affect on smoking and
through its effect on the sex ratio. Age affects mortality,

Table 4: Epidemiological parameters estimated from 1.8 million 
simulated sibling pairs

Parameter

RA lifetime prevalence 1.07%
F:M sex ratio in affecteds 3.07
Sibling relative risk 9.03
Number of ASPs 1856 (of 1.8 million sibling pairs)
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but only in the parents, and we report affection status
regardless of mortality.

Sex
Nearly all of the sex effect in RA risk comes from Locus C,
but the sex ratio in the general population, which was
based on CDC data, also has an effect in the offspring gen-
eration.

Marker data
We present markers on 22 autosomes that were designed
to be like real human autosomes in terms of genetic and
physical map lengths, but we did not generate data for sex
chromosomes. The markers were presented in three sets:

1. A set of 730 microsatellite markers, fairly evenly spaced
on chromosomes with an average inter-marker distance of
about 5 cM and with heterozygosities always exceeding
0.70 (due to a programming error, microsatellites had
lower heterozygosities than this).

2. A set of 9187 SNPs distributed on the genome to mimic
an Affymetrix 10 K SNP chip set but without monomor-
phic SNPs. Because these SNPs were derived from 120
HapMap haplotypes, all SNP allele frequencies were inte-
ger multiples of 1/120 (0.0083) and the lowest frequency
was precisely 1/120.

3. A very dense map of 17,820 SNPs on chromosome 6
(an average inter-marker spacing of 9586 bp, which corre-
sponds roughly to the density one would expect from a
genome-wide 300 K SNP set). The chromosome 6 dense
map includes 210 of the markers from the 10 K SNP map
(they are easily identifiable because they have the same
names in both sets).

Haplotype generation
Offspring haplotypes were generated by dropping genes
from parental haplotypes in the usual Mendelian fashion
and assuming a Haldane model (no interference). Paren-
tal haplotypes were derived by recombining the 120 Hap-
Map CEU haplotypes under the assumption of Hardy-
Weinberg conditions and assuming 30 generations of ran-
dom mating from a large population where the 120 Hap-
Map haplotypes initially had equal frequency. This was
done by generating a Poisson-distributed random variable
with a mean of 30 times the length of the chromosome in
Morgans and then distributing uniformly along the chro-
mosome the Poisson-distributed number of recombina-
tion points. To every interval between recombination
points, one of the 120 HapMap haplotypes is then
assigned at random. Any regions that held a trait locus
had to be assigned in Stage 2 of the simulation whichever
HapMap haplotype was assigned to the trait locus in Stage
1.

Special features of the simulated marker data
We provided more information in the simulated data
than one would ordinarily have in real data. These special
features of the data include the following:

1. No missing data
Marker data are usually missing on some family members,
especially those who died before the family was ascer-
tained. We provide marker data on all family members.
Researchers who would like their data to be more realistic
can delete marker information from deceased individuals.
By supplying data that would normally be missing, we
provide more opportunity to test effects of missingness,
etc.

2. No errors
We did not model any errors in the data simulation. In
real data there are typically some errors in genotyping and
sometimes there are sample mixups. By not modeling any
errors, we make it possible for the analyst to simulate his
own errors and test the effect of genotyping error on other
aspects of a genetic analysis. We also added no errors to
phenotypes.

3. Allele ordering reveals phase
The allele inherited from the father is always presented on
the left side within every genotype. This allows researchers
to determine haplotypes for all subjects and to determine
their parental origin. In real data, it is usually not possible
to know haplotypes or their origin, but new methods have
made molecular haplotyping possible and it is currently
being used. So, in real data we can sometimes know hap-
lotypes, but the parental origins of those haplotypes still
must be inferred.

Results
Epidemiological data from Stage 1 of the simulation
We analyzed the data from a randomly selected general
population of 1.8 million families in our Stage 1 simula-
tion to see that our epidemiological parameters had the
correct values. The results for 1.8 million sibling pairs (3.6
million subjects) generated using the model we devel-
oped are shown in Table 4.

The sibling relative risk is the lifetime prevalence in sib-
lings of affected individuals (proband-wise concordance)
divided by the lifetime prevalence in our simulated gen-
eral population. The numbers in Table 4 above are similar
to what one would see in real RA epidemiological data.
These numbers apply only to the offspring generation,
and not the parent generation of our simulated data.

Genetic analysis
After generating the Problem 3 data we undertook a series
of genetic analyses to check the data for flaws. We were
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satisfied, despite the very pronounced affect of the HLA
locus on RA. This effect may be too large, but it does
reflect the actual effect found in real RA data. The results
of these analyses are available at http://genetsim.org/
gaw15/.

Discussion
The use of software developed in an interpreted language
such as Octave [1] or R [2] can be used to produce very
sophisticated genetic data sets. Modern computers are fast
and powerful enough to compensate for the slower speed
of such software and the development time is speeded up
greatly when functions developed in the interpreted lan-
guage can be used. Slower functions can be written in C++
and compiled to work within the Octave or R environ-
ment, thus speeding up the simulation.

The data contained a few small errors, but these probably
did not have important effects on GAW15 participant
research. We provide information on our web page at
http://genetsim.org/gaw15/ about the Problem 3 data,
including the full source code used to produce it, and we
will continue to update that web page if more information
becomes available about the data (e.g., answers to user
questions or previously undocumented features). Because
we stored the seeds used to generate the Problem 3 data,
it is theoretically possible to reproduce it in its entirety.
We have done this but it does require a computer with
considerable amounts of RAM (maybe 10 GB). We are
adding code on our web page that will allow users to gen-
erate smaller data sets under the same model and thus cir-
cumvent the memory requirement.
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