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Abstract
The identification of susceptibility genes for common, chronic disease presents great challenges.
The development of novel statistical and computational methodologies to help identify these genes
is an area of great necessity. Much research is ongoing and the Genetic Analysis Workshop (GAW)
is a venue for the dissemination and comparison of many of these methods. GAW15 included real
data sets to look for disease susceptibility genes for rheumatoid arthritis (RA). RA is a complex,
chronic inflammatory disease with several replicated disease genes, but much of the genetic
variation in the phenotype remains unexplained. We applied two computational methods, namely
multifactor dimensionality reduction (MDR) and grammatical evolution neural networks (GENN),
to three data sets from GAW15. While these analytic methods were applied with the intention of
detecting of multilocus models of association, both methods identified a strong single locus effect
of a single-nucleotide polymorphism (SNP) in PTPN22 that is significantly associated with RA. This
SNP has previously been associated with RA in several other published studies. These results
demonstrate that both MDR and GENN are capable of identifying a single-locus main effect, in
addition to multilocus models of association. This is the first published comparison of the two
methods. Because GENN employs an evolutionary computation search strategy in comparison to
the exhaustive search strategy of MDR, it is encouraging that the two methods produced similar
results. This comparison should be extended in future studies with both simulated and real data.
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Background
Rheumatoid arthritis (RA) is a complex, chronic inflam-
matory disease affecting approximately 1% of the popula-
tion [1]. It is hypothesized that risk for RA is due to both
genetic and environmental contributions; however, the
etiology of the disease remains unknown [2]. Many epide-
miological studies have been performed to investigate the
genetics of RA. Oliver et al. [3] reviewed articles published
between October 2004 and November 2005 and found
that in addition to the HLA-DRB1 gene, association of
PTPN22 with RA has been consistently replicated in
numerous studies. The genetics of RA are beginning to be
unraveled, but the variants discovered do not account for
all of the genetic variation in RA. These and other suc-
cesses in genetic research of common, complex disease
contribute to optimism that contemporary study design
philosophy is adequate for these investigations, and must
simply be scaled to detect the smaller effects that contrib-
ute to these diseases.

Many common, complex diseases are currently being
investigated and a recurrent theme emerges: complex dis-
eases are likely the result of many genetic and environ-
mental factors. Identifying all polymorphisms that
present an increased risk of disease is difficult. Epistasis, or
gene × gene interaction, is increasingly assumed to play a
crucial role in the genotype-to-phenotype relationship of
common diseases [4-6]. Unfortunately, the detection of
gene × gene and gene × environment interactions requires
large samples due to the dimensionality of evaluating
combinations of multiple variables. This phenomenon is
referred to as the curse of dimensionality [7]; that is, as the
number of genetic or environmental factors increases, the
number of possible interactions increases exponentially
and many contingency table cells will have little or no
data.

To deal with this issue, much research is needed for
improved statistical methodologies. In this study, we will
apply two computational approaches to explore gene ×
gene interactions associated with RA: multifactor dimen-
sionality reduction (MDR) and grammatical evolution
neural network (GENN). The goals of this study are as fol-
lows: 1) to identify genes associated with RA; 2) to com-
pare the results of an exhaustive search strategy (MDR)
and an evolutionary computation search strategy
(GENN), and 3) to demonstrate alterative fitness metrics
for MDR. We will demonstrate that both MDR and GENN
detected a strong single locus effect of PTPN22; no multi-
locus models were identified. This result supports the
hypotheses that: 1) PTPN22 is associated with RA and 2)
MDR and GENN can both detect single-locus effects.

Methods
Sample
In this study, we are using three case-control data sets as
part of GAW15. Data set 1 is a candidate gene study
exploring 14 SNPs in PTPN22 from Carlton et al. [8]. This
data set has 1269 cases (some of which are affected sibling
pairs) and 1519 unrelated controls. Data set 2 is a candi-
date gene study exploring 20 SNPs in several candidate
genes including PTPN22, CTLA4, TNFRS1, and PADI4
from Plenge et al. [2]. This data set includes 839 cases
(including affected sibling pairs) and 855 unrelated con-
trols. Finally, data set 3 is a dense panel of 2300 SNPs gen-
otyped by Illumina for a 10-kb region of chromosome 18
that has demonstrated evidence for linkage in both US
and French whole-genome screens. This data set included
460 cases and 460 controls. We treated these data sets as
three independent sets for all analyses.

Computational methods
Multifactor dimensionality reduction (MDR) is a data
reduction method for detecting multi-locus genotype
combinations that predict disease risk for common, com-
plex disease. MDR pools genotypes into "high-risk" and
"low-risk" groups in order to reduce multidimensional
data into only one dimension. MDR has been described in
detail previously [9-11].

Three alternative fitness measures were used for compar-
ing multilocus models in MDR: balanced accuracy (BA),
model-adjusted balanced accuracy, and normalized
mutual information (NMI). BA weighs the classification
accuracy of the two classes equally and it is thought to be
more powerful than using accuracy alone when data are
imbalanced, or when the counts of cases and controls are
not equal [12,13]. BA is calculated from a 2 × 2 table relat-
ing exposure to status by [(sensitivity+specificity)/2].
Model-adjusted balanced accuracy is similar, but uses a
different threshold in the MDR modeling that is based on
the actual counts of case and control samples in the data
being evaluated. In a given combination of loci, individu-
als may have missing data at any one locus or multiple
loci. The MDR threshold can be adjusted to take into
account the precise number of individuals with complete
data for that particular multilocus combination. We per-
formed this threshold adjustment in combination with
balanced accuracy (model-adjusted BA). Normalized
mutual information (NMI) is a measure of information
transmission based on Shannon's entropy. It has been
described by Forbes as a performance measure for classifi-
ers. The NMI is the proportion of information provided by
the algorithm's classification, which is contained in the
true status or outcome [14]. For an error-free classifier,
NMI = 1, because the algorithm's classification and the
status are identical.
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Grammatical evolution neural network (GENN) is a novel
pattern recognition method developed to detect main
effects or multilocus models of association without
exhaustively searching all possible multilocus combina-
tions. Grammatical evolution (GE) is a machine-learning
algorithm inspired by the biological process of transcrip-
tion and translation. GE uses a genetic algorithm in com-
bination with a prespecified grammar (set of translation
rules) to automatically evolve an optimal computer pro-
gram. GENN utilizes GE to evolve the inputs (predictor
variables), architecture (arrangement of layers and func-
tions), and weights of a neural network (NN) to optimally
classify a given dataset.

GENN has been described in detail [15,16]. Briefly, GENN
begins with the initialization of parameters specified in
the configuration file, including mutation rate, crossover
rate, and number of generations. Next, the data are
divided into 10 equal parts for 10-fold cross-validation
(CV) to evaluate the predictive ability of the models devel-
oped. Third, an initial population of random solutions is
generated to begin the training process. Fourth, each indi-
vidual genome is translated into a NN according to the
rules of the grammar. Each NN is evaluated on the train-
ing set and its fitness is recorded. Fifth, the best solutions
are selected for crossover and reproduction using user-
specified proportions. The new generation (created by a
selection technique specified in the configuration file)
begins the cycle again. This continues until some stopping
criterion is met, a balanced classification accuracy of
100% is found, or a limit on the number of generations is
reached. An optimal solution is identified after each gen-
eration. At the end of GENN evolution, the overall best
solution is selected as the optimal NN. Sixth, this best
GENN model is tested on the 1/10 of the data left out to
estimate the prediction accuracy of the model. Steps two
through six are performed ten times using a different 9/10
of the data for training and 1/10 of the data for testing.
GENN has been shown to have high power to detect a
range of epistatic interactions in simulated data [15,16].

Data analysis
We performed an initial screen of all SNPs testing for
Hardy-Weinberg equilibrium (HWE) (separately in cases
and controls), genotyping efficiency, and single-locus
allelic chi-squared tests for association. Next, we explored
patterns of linkage disequilibrium (LD) in each of the
three data sets individually to fully understand the corre-
lations between the SNPs prior to analysis. This is essen-
tial when conducting analyses where cross-validation is
performed and consistency between models will be evalu-
ated. It is conceivable that the algorithm might identify
different SNPs in the best model for each CV interval that
are actually in LD with one another. If this LD informa-
tion is not known, it will appear as different association

signals. However, if it is known that the SNPs are in LD,
one can assume that perhaps it is one signal for that gene
region. Finally, we conducted MDR and GENN analyses
on all three data sets: MDR with balanced accuracy, MDR
with model-adjusted balanced accuracy, MDR with NMI,
and GENN. Figure 1 shows our data analysis plan. MDR
and GENN assume that all individuals are unrelated. All
of our controls were from an independent population but
some of the cases were related. We selected one case from
each family to create a subset of unrelated cases to use in
our analysis (no dupes data set). We also ran the analysis
with the all possible case-control pairs using the related
cases paired with the unrelated controls (dupes dataset).
We ran the analyses both ways, as reported in Table 1.

For these MDR analyses, we conducted five-fold cross-val-
idation and performed 1000 permutations to determine
statistical significance. We used several fitness functions to
perform model selection as described above. The configu-
ration parameter settings used in the GENN analysis were
as follows: 10 demes, migration every 25 generations,
population size of 200 per deme, crossover rate of 0.9,
and a reproduction rate of 0.1. The algorithm was run for
two times the number of generations as variables included
in the data set. These parameter settings have been shown
to optimize the performance of the GENN method in pre-
vious studies [16].

Results
In the tests for HWE, we found two SNPs out of HWE at p
< 0.05 in Data set 1 (in cases only), one SNP in Data set 2
(in controls only p = 0.045), and 75 SNPs in Data set 3 in
controls, 101 SNPs in cases, and 115 SNPs in both. We did
not remove any markers from analyses of Data sets 1 or 2
based on HWE. While traditionally deviations from HWE
have been interpreted as the result of genotyping error,
deviation might actually be the result of important geno-
type × phenotype association when these deviations occur
in cases or controls alone. We did, however, remove 115
markers (all with HWE p < 0.05 in cases and controls)
from Data set 3. The genotyping efficiency was <95% for
1 marker in Data set 1, 0 markers in Data set 2, and 11
markers in Data set 3. We removed these markers from
subsequent analyses. In single locus allelic chi-squared
tests for association, we found 9 SNPs statistically signifi-
cant at p < 0.05 in Data set 1, 6 SNPs in Data set 2, and 132
SNPs in Data set 3. All three of these exceed the number
expected by chance using α = 0.05. One SNP in PTPN22,
rs2476601, was highly associated (p < 0.001) in both Data
set 1 and Data set 2.

For the MDR and GENN analyses, several statistically sig-
nificant models were detected (shown in Table 1 for Data
sets 1 and 2). We report the prediction accuracy and the
cross-validation consistency (CVC) for all of the models.
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For MDR, 5-fold CV was performed and for GENN, 10-
fold CV was performed. Thus, the maximum CVC values
of 5 and 10 are shown in parentheses Table 1. In dataset
1, MDR with BA, MDR with model-adjusted BA, MDR
with NMI, and GENN detected rs2476601 as the best
model with statistically significant prediction accuracy of
~57–60% (p < 0.05) in the dupes data set and ~58–66%
(p < 0.03) in the no dupes data set. In Data set 2, MDR
with BA, MDR with model-adjusted BA, MDR with NMI,
and GENN detected rs2476601 as the best model with sta-
tistically significant prediction accuracy (p < 0.05). In
Data set 3, MDR with BA detected SNP_85 as the best
model with a statistically significant prediction accuracy
(p = 0.02) (not shown). MDR with NMI and GENN did
not detect any statistically significant loci in Data set 3.

Discussion
In this study, we applied several computational
approaches for detection of single-locus associations and

multilocus models of association to case-control data sets
for rheumatoid arthritis. Data sets 1 and 2 replicated the
association of rs2476601 using all computational
approaches. All case and control samples in Data set 2 are
also included in Data set 1, so the replication is not sur-
prising. The minor allele of R620W (rs2476601) is a mis-
sense SNP in the hematopoietic-specific protein tyrosine
phosphatase gene, PTPN22, and has been associated with
multiple autoimmune diseases, including RA [8]. This
SNP was previously reported for Data sets 1 and 2. This is
encouraging validation of these novel methods of analy-
sis.

From a methodological perspective, it is of note that
GENN and MDR detected the same main-effect model in
both Data sets 1 and 2. This study represents the first pub-
lished side-by-side comparison of the two methods.
Because GENN employs an evolutionary computation
search strategy in comparison to the exhaustive search

Data analysis planFigure 1
Data analysis plan.
Page 4 of 6
(page number not for citation purposes)



BMC Proceedings 2007, 1(Suppl 1):S70 http://www.biomedcentral.com/1753-6561/1/S1/S70
strategy of MDR, it is an important result that the two
methods produced similar results. This comparison
should be extended in future studies with both simulated
and real data. In addition, this is the first evaluation of the
model-adjusted balanced accuracy fitness measure for
MDR. This will need further validation in future simula-
tion studies.

As mentioned in the Methods section, we performed these
analyses in two ways. First, we ran the analysis using one
case per family and the unrelated controls (no dupes).
Second, we created all possible case-control pairs using
the affected sibling pairs and the unrelated controls
(dupes). The same loci were detected in all analyses
despite these different configurations of the data. How-
ever, the prediction accuracy results were slightly different.
It is important to note that using the affected siblings and
treating them as unrelated may bias the prediction accu-
racy estimates. While this approach is often done to max-
imize the use of all samples collected, and fortunately the
loci detected did not change, the estimates of the predic-
tive ability should be taken with caution.

Conclusion
An important conclusion of this study is that while MDR
and GENN were applied to these data primarily for the
purpose of detecting multilocus models of association,
they were successful in detecting statistically significant
main effects. This is a key discovery because there has been
skepticism in the literature as to whether or not these
approaches for detecting epistasis could also be applied to

data sets in which main effects are suspected. Thus, if it is
unknown whether main effects or interactions are likely
to be associated with the phenotype of interest, MDR or
GENN could be applied in addition to the traditional sta-
tistical approaches and both main effects and interactions
could be found.
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