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Abstract
We apply an analysis based upon mixed-models to the Genetic Analysis Workshop 15, Problem 3
simulated data. Such models are commonly used to mitigate the tendency for population structure,
or cryptic relatedness, to inflate the false-positive rate of test statistics. They also allow for explicit
modeling of varying degrees of relatedness in samples in which some individuals are related by
(possibly unknown) pedigree, whereas others are not. Furthermore, the implementation of the
method we describe here is quick enough to be used effectively on genome-wide data. We present
an analysis of the data for Genetic Analysis Workshop 15, Problem 3, in which we show that these
methods can effectively find signals in this data. Somewhat disappointingly, the false-positive rate
does not appear to be reduced, but this is largely because the method used to simulate the data
appears not to have encompassed effects, such as population stratification, that might have led to
inflation of p-values.

Background
A major issue when analyzing genome-wide data is that of
false-positive signals. In part, this is caused by the large
number of loci that are typically analyzed in such studies.
It is often also caused by the effects of population stratifi-
cation [1,2] or cryptic relatedness [3]. We focus on the sec-
ond issue here. We apply mixed-model methods that have
been developed to reduce the adverse effects of popula-
tion structure, whether caused by geographical structure
of populations, or relatedness (either observed or unob-
served) between individuals.

Although the confounding effect of population structure
can be minimized by careful matching design in case/con-
trol studies, there is still some evidence of confounding
even in well designed studies [4]. Even when there is no
evidence of stratification by standard methods, there can
still be potential confounding. For example, in Campbell
et al. [5] a SNP in the gene LCT that is totally unrelated to
height showed strong association with height in a study in
a European American population.

Two approaches that are commonly used to reduce the
false-positive rate in the presence of population structure
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are genomic control [3] and structured association [6]. In
other work we have shown that these do not deal with the
problem in a satisfactory way [7,8], so we focus on a more
recent approach: mixed models. This method has tradi-
tionally been applied in contexts such as cattle-breeding,
in which extended pedigrees are known, or for a com-
bined analysis of linkage and linkage-disequilibrium data,
e.g., Meuwissen and colleagues [9-11]. More recently, Yu
et al. [12] introduced a mixed-model approach suitable
for application in a genome-wide context, in which relat-
edness was estimated via genome-wide marker data. In a
recent paper, we extended this approach and applied it to
data for Arabidopsis thaliana in which correlation between
phenotypic distribution and population structure is high,
and saw that the mixed-model approach greatly reduced
the effects of population structure on false-positive rates
[8].

The novelty in this paper is two-fold. First, we apply the
method in a situation where the number of markers is
much greater than in existing applications. Second, we
apply the method in a context in which the degree of relat-
edness is known for some pairs of individuals (e.g., the
affected sib-pairs) and unknown for others (e.g., pairs
involving control individuals).

Methods
We use a generalized linear mixed-model, which is an
extension of Yu et al. [12]. We write

η = Xα + Zυ + e,

where η is the vector of linear predictors, which is related
to the binary phenotype, affection status, through the
inverse link function; α is a vector of fixed effects, corre-
sponding to the SNP effects we are testing; υ is a vector of
random effects reflecting the polygenic background; and
X, Z are known incidence matrices relating the observa-
tions to fixed and random effects, respectively.

The mean and the variance of the model are assumed to
be:

E[η] = Xα,

where K is the relationship matrix reflecting the genetic
background correlations between individuals. (This is the
term that reflects known or unknown relatedness infor-
mation.) Using y to denote phenotype, the inverse link
function for the probability of an individual being
affected is the logit function:

We vary the way in which K is calculated in the model.
First, because pedigree information is available, and con-
trols are taken from different families and are assumed to
be unrelated, we can use the known kinship to calculate K
directly from the pedigree information. Second, in order
to investigate how accurately kinship can be estimated
when pedigree information is unknown, we can estimate
the relative kinship [13] from genome-wide SNPs. For the
purpose of comparison we also present results from a
standard logistic linear regression analysis. We obtain this
by removing the random effect term Zυ in Eq. (1).

Results
A combined SNP data set with both of the 1500 ASP fam-
ilies and the 2000 unrelated control subjects is analyzed
for each replicate. Because methods such as ours are
widely used on SNP data, we analyze the SNP data only
(9187 SNPs). Due to computational constraints, we only
test the mixed model with estimated kinship (below)
using a random subset of 50 ASP families and 200 con-
trols. The Matvec package [14] was used in the analysis of
combined data sets. The R package [15] and the glmmPQL
library was used for generalized linear mixed models with
estimated kinship. For the purposes of illustration, we
focus on results for Replicate 1. We then present results
across all 100 replicates in order to assess power.

In Figure 1 we show the results for both simple logistic
regression and mixed-model analysis on chromosomes 6
and 11, respectively. In each case, the phenotype is RA
(rheumatoid arthritis) affection status. We used the SNP
genotypes only. The former does not explicitly allow for
the relatedness between individuals, whereas the latter
does. However, we see that for this data both analyses find
strong signals in the correct locations. Indeed, the results
of the two methods are extremely similar, due to the lack
of population structure in the simulated data. Note that
analysis of all regions other than chromosomes 6 (Loci C
and D), 11 (Locus F), and 18 (Locus E) found no signal
(results not shown.) The horizontal line corresponds to a
p-value of 1 × 10-4, chosen because an examination of
chromosomes with no functional loci rarely contained p-
values below this number (see discussion of significance
below). The results from models using estimated kinship
give the same pattern.

These plots suggest that cryptic relatedness is not a prob-
lem for these data. To further examine this, in Figure 2, we
look at the cumulative distribution function [cdf] of p-val-
ues across all null SNPs (i.e., SNPs on all chromosomes
with no functional loci), for Replicate 1. This is similar to
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the idea in Papanicolaou et al. [16]. Compared to situa-
tions in which phenotype and genome-wide genotype are
heavily correlated, where the cdf lies above the diagonal
(e.g., Zhao et al. [8]), here the p-values are distributed
close to the expected way. In fact they lie slightly below
the diagonal, indicating under-dispersion. Rather than
correcting the under-dispersion of the p-values, the mixed-
model seems to exaggerate that tendency.

All replicates show the same pattern for the p-value distri-
butions. Positive correlation between loci (i.e., linkage
disequilibrium) can lead to under- or over-dispersion of
p-values. We tested this possibility by thinning the data by
choosing 1/10 of the SNPs. Now, the SNPs are no longer
correlated (more than 95% of r2 values between neighbor-
ing SNPs are less than 0.02). The dispersion pattern
remains the same. Thus, correlation between loci is not
the cause. The apparent tendency of a mixed-model anal-
ysis to exaggerate the under-dispersion has, to our knowl-
edge, not been documented previously, and deserves
further investigation to discover whether it is a conse-
quence of the particular simulation scheme used for this
data. Nonetheless, it is reassuring that signals are found
on Loci C, D, E, and F despite this. Indeed, while mixed
models are known to help when cryptic relatedness is
present, our results indicate that they do not hurt a great
deal when it is not.

To examine overall power, we analyzed all 100 replicates
for the cases discussed above. We find that our method
consistently finds the functional Loci C, D, E, and F in
these regions. A formal power study would require a less
heuristic method of assessing significance than an arbi-
trary (albeit supported by empirical results) definition of
p < 10-4. One scheme is to proceed via a permutation-
based test in which replicate data sets are created, their
phenotypes permuted, and the distribution of smallest p-
value is observed. Computational requirements prohibit
the use of such a scheme here. In any case, the use of large
numbers of genome-wide SNPs to get the null distribu-
tion and then derive an empirical p-value cut-off (10-4

above), is probably sufficient. All 100 replicates have p-

Cumulative distribution function [cdf] of p-value distribution across all loci for Replicate 1Figure 2
Cumulative distribution function [cdf] of p-value dis-
tribution across all loci for Replicate 1. The black line 
shows the distribution under a logistic regression analysis. 
The red line shows those resulting from the mixed-model 
analysis. The dashed line shows the ideal, theoretical null dis-
tribution.

Analysis of Replicate 1 from logistic regression and mixed-model analysis for chromosome 6 and chromosome 11Figure 1
Analysis of Replicate 1 from logistic regression and mixed-model analysis for chromosome 6 and chromosome 
11. The red lines denote the positions of the functional Loci C, D, and F, respectively. The horizontal dashed line corresponds 
to a p-value of 10-4.
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value less than 10-4 at the SNP nearest to the functional
Loci C, D, E, and F for the mixed-model analysis.

Finally, we assess the accuracy with which kinship is esti-
mated using a pool of genome-wide markers. We find that
results are good for the GAW15 simulated data. For kin-
ship values within families that are supposed to be 0.25,
estimates vary from 0.2 to 0.35. For values supposed to be
0, estimates vary from 0 to 0.05. Unfortunately, the simu-
lated scheme appears not to have included any ancestry
relationships between control individuals, or across case
families. In reality, all individuals are related to some
degree, although the significance of that relatedness will
vary with individuals and with the analysis being per-
formed. While our results show that kinship can be esti-
mated in this study, a more comprehensive exploration of
this issue, involving data with a more complex relatedness
structure, would be of some interest.

Discussion
These results show that a mixed-model scheme can be
used successfully to analyze genome-wide SNP data.
Unfortunately, the simulation scheme used for GAW15
has resulted in data with a range of relatedness that is not
particularly rich. Thus, the data does not provide an ideal
environment for assessing the performance of our
method. This caveat is further strengthened by the fact
that relatively simple methods, such as the logistic regres-
sion analysis we show here, also find the functional loci in
the regions we have considered. Thus, while there is a
growing body of evidence that mixed models provide an
effective way of mitigating the negative effects of genome-
wide correlation between genotypes (induced by factors
such as population structure), the data here does not pro-
vide an ideal test for the method. In particular, the popu-
lation of controls have been simulated in a way that
results in little relatedness between them.

An obvious extension for future work is the detection of
interactions. While there are a variety of problems associ-
ated with such analyses (see Marchini et al. [17]), the
inclusion of interaction terms should be feasible within
our framework. While the number of possible interactions
is likely to be prohibitive for modern SNP chip data, a
scheme in which only a small set are included in the
model at any given moment, and in which we then
explore the space of such models using a Markov-chain
Monte Carlo scheme, should be feasible.

Conclusion
We explored the feasibility of genome-wide association
studies for binary traits using mixed models. In the simu-
lated data we found no confounding due to population
structure. Mixed models are flexible enough to be used in
a context in which some individuals are related through

known pedigree and others are not. While the results here
provide an imperfect example of such an implementation,
they provide cause for optimism in future studies.
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