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Abstract

We propose to use the rough set theory to identify genes affecting rheumatoid arthritis risk from
the data collected by the North American Rheumatoid Arthritis Consortium. For each gene, we
employ generalized dynamic reducts in the rough set theory to select a subset of single-nucleotide
polymorphisms (SNPs) to represent the genetic information from this gene. We then group the
study subjects into different clusters based on their genotype similarity at the selected markers.
Statistical association between disease status and cluster membership is then studied to identify
genes associated with rheumatoid arthritis. Based on our proposed approach, we are able to
identify a number of statistically significant genes associated with rheumatoid arthritis. Aside from
genes on chromosome 6, our identified genes include known disease-associated genes such as
PTPN22 and TRAF1. In addition, our list contains other biologically plausible genes, such as ADAM15
and AGPAT2. Our findings suggest that ADAM15 and AGPAT2 may contribute to a genetic
predisposition through abnormal angiogenesis and adipose tissue.

Introduction
Rheumatoid arthritis (RA) is a chronic and systemic
autoimmune disorder. It is characterized by synovitis -
an inflammation of synovial membranes, which enclose

joint. The afflicted joints become warm, swollen, tender,
stiff, and in the final stage, deformed. RA is believed to
be a heterogeneous disease because the manifestations
are greatly varied across patients in terms of severity,

Page 1 of 6
(page number not for citation purposes)

BioMed Central

Open Access

mailto:chatchawit.aporntewan@yale.edu
mailto:david.ballard@yale.edu
mailto:jiyoung.lee@yale.edu
mailto:joonsang.lee@yale.edu
mailto:zheyang.wu@yale.edu
mailto:hongyu.zhao@yale.edu
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


progression, and response to therapy. It is estimated that
genetic factors account for 60% of disease susceptibility
[1]. The association between human leukocyte antigen
(HLA) genes and RA has been well established, although
HLA genes only account for 30% of the genetic
contribution [1]. This distribution suggests that a genetic
predisposition to RA involves non-HLA genes. There are
many ongoing efforts to identify non-HLA genes
associated with RA. Recent studies indicate that
PTPN22, OLIG3/TNFAIP3, STAT4, and TRAF1/C5 genes
may be involved in RA [2-5], and it is believed that many
other genes are yet to be discovered.

To incorporate prior genome annotation information,
we consider a gene-based analysis in this manuscript
with the hope that a joint analysis of all the markers, e.g.,
single-nucleotide polymorphisms (SNPs), in a gene may
increase statistical power for gene detection [6]. To
achieve this goal, we employ the rough set theory (RST)
[7], which is a method for feature selection to select
informative SNPs for association analysis. Although a
previous study concluded that RST did not identify
disease-related loci [8], it only considered relative
reducts, one of many options (e.g., global reducts,
dynamic reducts, and generalized dynamic reducts) in
RST for feature selection. The more robust definitions,
such as generalized dynamic reducts, may offer higher
power to detect genes associated with disease. We
combined SNPs selected from RST to define joint
patterns across these SNPs. We then clustered the joint
patterns so that subjects sharing similar genotypes are
grouped together. Statistical association was studied
between disease status and cluster membership. In the
following, we detail these steps and report findings from
the analysis of North American Rheumatoid Arthritis
Consortium (NARAC) data.

Methods
The genome-wide RA data was collected by the NARAC
and provided by the Genetic Analysis Workshop 16.
SNPs with HWE p-value < 0.001 or MAF < 0.01 or with a
missing percentage of an SNP or an individual > 0.1 were
excluded. Subsequently, 500,884 SNPs from 1,140
controls and 862 cases remained. The remaining SNPs
were assigned to their corresponding genes according to
the gene annotation attached to the data. Note that the
gene annotation assigned every SNP to a gene. The SNPs
that were not in any gene regions were assigned to
neighboring genes. In addition to case-control status,
anti-cyclic citrullinated peptide (anti-CCP) and rheuma-
toid factor (RF) were used to classify clinical subgroups
of RA patients. The subjects whose RF > 40 IU/ml were
classified as RF+. A total of 1,961 subjects had anti-CCP
data (1,330 anti-CCP+), and a total of 861 subjects had
RF data (759 RF+).

We first give an overview of the RST [7]. Let A = (U, A ∪
{d}) denote a decision table in which U is a set of
subjects, A is a full set of SNPs in a specific gene, and d is
a decision variable (case/control). An example of a
decision table is shown in Table 1. A reduct is a minimal
set of SNPs that are relevant to the decision variable. B ⊂
A is a relative reduct if B is a minimal set such that ∂B = ∂A,
where ∂B denotes a decision based on B. In Table 1, the
universe U is {Subject1, ..., Subject6} and the decision Vd

is {Case, Control}. The function ∂B U Æ Vd is defined

as ∂ ↓ B(x) = {v Œ V ↓ d: x might be v if we can observe
only SNPs of x in B}. For example,

∂ ={ , }( ) { , }SNP SNP Subject Case Control1 2 1 (1)

∂ ={ , }( ) { , }SNP SNP Subject4 Case Control1 2 (2)

∂ ={ , }( ) { , },SNP SNP Subject6 Case Control1 2 (3)

whereas

∂ ={ , }( ) { , }.SNP SNP Subject3 Case Control1 2 (4)

Table 1 yields two relative reducts, {SNP1, SNP3} and
{SNP2, SNP3}. The set of all relative reducts of decision
table A is denoted by RED(A, d). Note that the above
definition of relative reducts is also valid for a decision
table with missing values.

The relative reducts are very sensitive to a small change
in the decision table. Similar to the case in which a small
prediction error is achieved without cross-validation, the
prediction is not reliable because it overfits the data.
Dynamic reducts provide a more robust solution to
feature selection. It is defined as follows:

DR RED d RED d( , ) ( , ) ( , ).A F A B=
∈B F
∩∩ (5)

DR(A, F) denotes the set of all dynamic reducts of
decision table A, and F denotes a finite set of subtables

Table 1: An example of a decision table

Subjecta SNP1 SNP2 SNP3 Status

1 1 2 2 Case
2 2 1 2 Case
3 2 2 3 Case
4 1 2 1 Control
5 2 1 2 Control
6 1 2 3 Case

aThe decision table contains all subjects in a study and all SNPs in a
specific gene. SNP Œ {1, 2, 3, missing}, where 1 = aa, 2 = aA, 3 = AA,
Status Œ {Case, Control}. This table was adapted from that in Pawlak
[24].
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based on a subset of all the rows in the decision table.
The default sizes of the subtables are 50%, 60%, 70%,
80%, and 90% [9]. For each size, ten subtables are
randomly constructed. In each subtable, the ratio of
cases to controls is approximately equal to that of the
full table. A more relaxed definition is generalized
dynamic reducts, denoted by GDR(A, F), where

GDR RED d( , ) ( , ).A F B=
∈B F
∩ (6)

The definition of GDR in Eq. (6) can be further loosened
by equipping it with an epsilon,

GDR C A C∈ = ⊆ > − ∈( , ) { : },A F stability coefficient of 1

(7)

where the stability coefficient (SC) is

SC
B F B= ∈ ∈card

card
({ : ( , )})

( )
.

C RED d
F

(8)

card(S)denotes the cardinality of set S. The value of SC
indicates the uniformity of a generalized dynamic reduct
in the full decision table.

We set ε at 0.5 to discard the reducts that are statistically
significant, but not stable (small SC). Among all the
reducts found, we chose the one having the highest SC as
a set of representative SNPs for a gene. The computa-
tional burden can be high when a gene contains
hundreds of SNPs. Our empirical study showed that
RST often selects among the top-ten SNPs ranked by an
allelic test. To relieve the computational burden, for
every gene we pre-selected 10 SNPs through allelic tests.
There are 8,105 genes (49.01%) that contain more than
10 SNPs.

Starting from the top ten or fewer SNPs, RST yields a set
of selected SNPs and their joint genotypes form a joint
genotype pattern. We then applied the Pearson’s chi-
square test to calculate the p-value for genetic association
based on this n × 2 table, where n is the number of
distinct patterns, and the two columns correspond to
cases and controls. The patterns with at least one missing
SNP are excluded from the statistical test (no imputa-
tion). We use permutations to correct for multiple
comparisons. For each permutation, the case and control
status is shuffled, and the reducts are recomputed. We
conducted 1,000 permutations to derive the empirical
statistical significance level.

We used the complete-link clustering and agglomerative
algorithm [10] to group individuals based on their joint
genotype patterns. The optimal number of clusters was

determined by the Dunn index [11]. The clustering
algorithm was terminated when

a k P( , ) ,< 1 (9)

where

a k P q k

r
r q

k Xq Xr

p k
X p( , ) (

min
( , )

max
( ),min= ≤ ≤

≤
≠

≤ ≤( )1

1

1

dist

diam

(10)

diam( ) ( , ( , ),maxA x y A d x y∈ (11)

dist( , ) ,( , )
min

A B x Ad x y

y B
∈

∈
(12)

A B X A B, , ,⊂ ≠and φ (13)

where k denotes the number of clusters, P = {X1, ..., Xk}
denotes a k-partition of X, and X denotes the complete
set of all items that we want to cluster. For instance, X =
{a, b, c, d, e, f}, k = 3 and P = {{a, b, c}, {d}, {e, f}}The
diameter of cluster A is diam(A), and the distance
between clusters A and B is dist(A, B). The distance
between items x and y, d(x, y), is measured by mutual
information (MI) [12]. MI clustering is motivated by the
observation that subjects who shared similar haplotypes
were put in the same cluster [13]. Another distance
measure proposed in the literature is allele sharing (AS),
which was used to classify HapMap populations [14].
We apply both MI and AS clustering, and then calculate
the statistics of clustered patterns.

Results
Based on the approach discussed above, we have
identified non-HLA genes associated with RA (Table 2).
These genes include some known genes, TRAF1 and
PTPN22, and also include novel genes. In the following,
we focus our discussion on two genes that are more
biologically plausible, namely, ADAM15 and AGPAT2.
Because the high degrees of freedom for these tables, we
reduce the total number of patterns considered through
clustering. The results are also shown in Table 2. MI
clustering altered the ranks of PTPN22, AGPAT2,
ADAM15, TRAF1 to three, four, five, and six, respectively,
whereas the ranks altered by AS clustering were five,
nine, seven, and six.

Because this data set is enriched for many gene signals on
chromosome 6, all genes on chromosome 6 are excluded
from Table 2, and they are shown separately in Table 3.
Among HLA genes, HLA-DRB1 shows the strongest
association to RA. BTNL2 seems to be the best candidate

BMC Proceedings 2009, 3(Suppl 7):S126 http://www.biomedcentral.com/1753-6561/3/S7/S126

Page 3 of 6
(page number not for citation purposes)



for non-HLA genes on this chromosome but the SC is
relatively small, which implies that BTNL2 may only
affect a subset of all RA cases.

To determine the RA subgroups associated with BTNL2
(SC = 0.36) and PTPN22 (SC = 0.54), we conducted
association studies in two clinical subgroups classified
by anti-CCP and RF (Table 4). Our analysis shows that
BTNL2 was strongly associated with anti-CCP, but
BTNL2 was not associated with RF (Table 4). BTNL2 is
close to HLA genes, which are associated with the
production of anti-CCP [15]. As a result, the association
of BTNL2 with anti-CCP is apparently due to strong
linkage disequilibrium with nearby HLA genes. There is
probably no major role of BTNL2 in the pathogenesis of
RA, as hypothesized by Orozco et al. [16]. Our
calculations also indicate that PTPN22 was not asso-
ciated with either anti-CCP or RF (Table 4).

Discussion
Our findings indicate that, in addition to genes on
chromosome 6, PTPN22, TRAF1, ADAM15, AGPAT2, and
a number of other genes shown in Table 2 may be
associated with RA. MI clustering increased the overall
ranks of PTPN22, AGPAT2, ADAM15, and TRAF1. In
contrast, AS clustering lowered the rank of AGPAT2.

MI clustering seems to perform better than AS clustering
in association studies because MI exhibited clusters of
similar haplotypes [13] but AS produced clusters of
ancestral populations [14]. The allelic test based on
single SNPs outside of chromosome 6 showed that
PTPN22, TRAF1, and ADAM15 were in the top 25 genes
(non-adjusted p-values: 1.21 × 10-10, 8.37 × 10-8, 2.00 ×
10-7 respectively) except for AGPAT2 (non-adjusted
p-value: 1.69 × 10-4). As a result, AGPAT2 may have
been overlooked in previous SNP-based analyses.

The genetic architecture of ADAM15 is noteworthy. The
length of ADAM15 is one-third of the average human
gene (the shortest of multiple-exon ADAM genes). It is
comprised of 23 exons (2.5 times that of the human

Table 2: Top-ranked genes associated with RA (22 autosomes, except chromosome 6)

Chr. Gene symbola No. SNPsb SCc No clusteringd MI clustering AS clustering

p-value dfe p-valuef dfe p-valuef dfe

16 C16orf57 2/2 1 6.06 × 10-8 5 6.06 × 10-8 (1) 5 1.65 × 10-2 (10) 3
21 KRTAP10-6 2/2 1 8.06 × 10-6 6 8.06 × 10-6 (2) 6 4.42 × 10-7 (1) 3
19 DEDD2 3/3 1 3.29 × 10-5 12 3.35 × 10-3 (9) 2 1.84 × 10-6 (2) 6
9 AGPAT2 4/4 1 4.57 × 10-5 30 4.57 × 10-5 (4) 5 3.30 × 10-3 (9) 18
9 TRAF1 3/3 1 7.35 × 10-5 11 5.90 × 10-5 (6) 2 8.91 × 10-6 (6) 6
15 ODF3L1 4/4 1 1.00 × 10-4 29 1.00 × 10-4 (7) 29 1.89 × 10-6 (3) 17
19 RSHL1 3/3 1 1.02 × 10-4 12 1.53 × 10-3 (8) 1 1.09 × 10-3 (8) 6
11 CDC42BPG 3/3 1 1.04 × 10-4 12 7.95 × 10-1 (10) 1 2.55 × 10-6 (4) 6
1 ADAM15 7/7 1 1.08 × 10-4 64 5.62 × 10-5 (5) 49 2.05 × 10-5 (7) 40
1 PTPN22 6/7 0.5 1.24 × 10-4 34 1.52 × 10-5 (3) 27 3.58 × 10-6 (5) 20

aThe genes are sorted by p-value (no clustering). Only the top ten genes in this table were clustered.
bThe number of selected SNPs and the total number of SNPs that were genotyped.
cSC, stability coefficient.
dThe adjusted p-values (no clustering) for all genes in the table are less than 0.001 (1,000 permutations).
edf, degree of freedom, which is the number of clusters subtracted by one.
fThe numbers in parenthesis are the ranks according to MI and AS clustering.
gBold font indicates the genes that have been reported in the literature (PTPN22 and TRAF1) and the genes that we have found that are biologically
plausible (ADAM15 and AGPAT2).

Table 3: Top-ranked genes associated with RA on chromosome 6

Gene symbol No. SNPsa SCb p-Valuec

HLA-DRB1 6/6 1.00 4.89 × 10-114

HLA-DRA 10/10 0.90 1.18 × 10-86

BTNL2 10/10 0.36 6.86 × 10-81

HLA-DQB1 8/10 0.36 1.86 × 10-77

HLA-DQA2 10/10 1.00 6.19 × 10-74

HLA-DQA1 5/5 1.00 2.78 × 10-72

C6orf10 10/10 0.88 9.01 × 10-70

LOC401252 9/10 0.82 7.15 × 10-51

HLA-DOB 10/10 1.00 8.00 × 10-32

aThe number of selected SNPs and the total number of SNPs that were
genotyped.
bSC, stability coefficient.
cThe adjusted p-values (no clustering) for all genes in the table are less
than 0.001 (1,000 permutations). No clustering was performed.

Table 4: BTNL2 and PTPN22 loci associated with anti-CCP and RF

BTNL2 gene PTPTN22 gene

Trait anti-CCP RF anti-CCP RF

SNPs selected/
total no. SNPs
genotyped

6/6 10/10 6/7 6/7

SC 1.00 1.00 1.00 0.88
p-Value 5.33 × 10-166 4.98 × 10-1 5.40 × 10-2 8.60 × 10-1

Adjusted p-value < 0.001 0.560 0.026 0.870
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average) and 22 introns (the average length is less than
one-tenth of the human average). At least 13 different
splice variants have been found in normal human tissues
[17]. These facts suggest that the identification of
ADAM15 may be hindered due to its complex splicing.

The deterioration of arthritic joints is due to the fact that
cells in synovial membranes that produce synovial fluids
secrete several enzymes, collectively called matrix metal-
loproteinases (MMPs). MMPs are capable of degrading
different types of extracellular matrix proteins, including
bone and cartilage. A disintegrin and metalloproteinases
(ADAMs) is a new family of metalloproteinases that
shares structural similarities with MMPs as well as snake
venom metalloproteinases. A high level of ADAM15
mRNA expression has been found in RA synovium [18].
As RA progresses, the synovial tissue expands and forms
destructive panni - flaps of tissue hanging on synovium
and particularly on cartilages. The tissue hyperplasia
induces oxygen deficiency, which necessitates more
blood vessels to supply oxygen. An amplification loop
begins and therefore promotes angiogenesis, the forma-
tion of new blood vessels arises from pre-existing blood
vessels. Because angiogenesis is a crucial step to progress
bone damage, a blockade of angiogenesis would prevent
the delivery of oxygen and nutrients to the inflammatory
site. Inhibiting vascular endothelial growth factor
(VEGF), which is a key factor in angiogenesis, showed
a reduction in disease severity in animal models [19].
ADAM15 expression was up-regulated by VEGF, and
linearly correlated with vascular density in synovial
tissue [18]. A recent study suggested that VEGF and
ADAM15 participate in an amplification loop. Inhibiting
ADAM15 suppressed ocular neovascularization, a form
of angiogenesis in eyes [20].

Although the mRNA expression level of ADAM15 was
strongly associated with the progression and the severity
of RA, the genetic predisposition to RA has not been
elucidated yet. More association studies of ADAM15 in
other independent populations, as well as better under-
standing of ADAM15 functions, are needed to confirm its
effects in genetic predisposition to RA.

The involvement of AGPAT2 in RA is not straightforward.
Generally, defects in AGPAT2 cause inherited lipodystro-
phy, a genetic disorder characterized by the selective loss
of adipose tissue (fat loss) [21]. AGPAT2 is a crucial
enzyme in biosynthesis of triacylglycerol, which is a
primary form of fat stored in white fat cells. Thus,
AGPAT2 is relevant to the formation of adipose tissue.
White adipose tissue is ubiquitous in human joints.
Although it used to be regarded simply as energy storage,
it is now accepted that white adipose tissue is an
endocrine organ that produces a variety of signaling

proteins called adipokines. A significant level of three
adipokines (leptin, adiponectin, resistin) has previously
been found in synovial fluid of RA and osteoarthritis
patients [22]. The adipokines play an important role in
cross-talk between inflammatory system and adipocytes.
It was concluded that the products of adipose tissue
contribute to inflammatory and degenerative processes
in common joint diseases [22]. Therefore, AGPAT2 may
mediate inflammatory joints via adipose tissue.

The significant p-value of TRAF1 in Table 2 replicates the
recent discovery of its association with predisposition to
RA [5]. However, we could not replicate STAT4 and
OLIG3/TNFAIP3’s association with RA (non-adjusted
p-value = 0.04 and 0.02). Our failure to replicate
STAT4 and OLIG3/TNFAIP3 may be due to the lack of
a sufficiently large number of subjects as compared with
the original study [3,4,23]. The other genes in Table 2
(C16orf57, KRTAP10-6, DEDD2, ODF3L1, RSHL1, and
CDC42BPG) may contribute to RA, but no relevant
literature suggests their potential role in the pathogenesis
of RA.

We used the SNP annotation provided by Genetic
Analysis Workshop 16 that assigns each SNP to one
gene. There are 360,389 SNPs (67.78%) that are in gene
deserts and are farther than 10,000 bp from the closest
genes. A reviewer’s suggestion is to define intergenic units
and test them separately. Defining intergenic units may
identify more genomic regions contributing to RA, but
the results for ADAM15 and AGPAT2 still hold, because
they contain only SNPs nearby (distance < 5,000 bp).

Conclusion
RST may offer an effective alternative approach for SNP
selection for genetic association studies. The stability
coefficients can be used to filter out those genes that are
statistically significant, but not stable. Consequently, this
may help to increase our chance of distinguishing truly
associated genes from those false signals. Our gene-
based analysis has led to the identifications of a number
of novel genes, with ADAM15 and AGPAT2 having
plausible biological mechanisms related to development
of RA. These two genes may contribute a genetic
predisposition to an abnormality in angiogenesis and
adipose tissue, which are important factors in the
progression of RA.
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anti-CCP: anti-cyclic citrullinated peptide; AS: Allele
sharing; GDR: Generalized dynamic reduct; HLA:
Human leukocyte antigen; MI: Mutual information;
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ican Rheumatoid Arthritis Consortium; RA: Rheumatoid
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