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Abstract

Currently, genome-wide association studies (GWAS) are conducted by collecting a massive
number of SNPs (i.e., large p) for a relatively small number of individuals (i.e., small n) and
associations are made between clinical phenotypes and genetic variation one single-nucleotide
polymorphism (SNP) at a time. Univariate association approaches like this ignore the linkage
disequilibrium between SNPs in regions of low recombination. This results in a low reliability of
candidate gene identification. Here we propose to improve the case-control GWAS approach by
implementing linear discriminant analysis (LDA) through a penalized orthogonal-components
regression (POCRE), a newly developed variable selection method for large p small n data. The
proposed POCRE-LDA method was applied to the Genetic Analysis Workshop 16 case-control
data for rheumatoid arthritis (RA). In addition to the two regions on chromosomes 6 and 9
previously associated with RA by GWAS, we identified SNPs on chromosomes 10 and 18 as
potential candidates for further investigation.

Background
Genome-wide association studies (GWAS) are challenged
by the “curse of dimensionality”, i.e., a large number of
single-nucleotide polymorphisms (SNPs) are genotyped
(i.e., large p) from a small number of biological samples
(i.e., small n). Because of this, in practice, only one SNP is
evaluated for association at a time [1]. However, such

univariate approaches ignore the high correlation between
SNPs in certain regions of the genome due to linkage
disequilibrium (LD) [2]. Recently, Zhang et al. [3]
developed a penalized orthogonal-components regression
(POCRE) method for efficiently selecting variables in large
p small n settings. Here we propose to implement linear
discriminant analysis (LDA) combined with POCRE, and
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apply the so-called POCRE-LDA to a case-control GWAS
dataset.

Methods
POCRE
POCRE works well to fit a large p small n regression
model [3],

Y X= + +
=

∑μ β εj j

j

p

1

, (1)

where the sample (Y, X1,..., Xp) is of size n. Let
X X X= ( , , )1

T
p
T… , and further assume both Y and X are

centralized (μ = 0 in the above model). Starting
with �X X1 = , POCRE sequentially constructs com-
ponents �X k kω such that �Xk is orthogonal to
{ , , }� … �X Xi i k kω ω− −1 1 , and the loading ωk = g/||g|| with
g minimizing

− + + =2 12γ α γ γ αλ
T

k
T T

k g� �X YY X   subject to  || || ( ), || || .

(2)

Here gl(g), is a penalty function with tuning parameter l,
which Zhang et al. [3] implemented with empirical Bayes
thresholding methods proposed by Johnstone and
Silverman [4]. Such implementation introduces a proper
regularization on g, and provides adaptively sparse
loadings of orthogonal components.

When the optimal g solving Eq. (2) is zero, we stop the
sequential construction because the constructed orthogo-
nal components { , , }� � …X X1 1 2 2ω ω account for almost all
contributions of X to the variation in Y. An estimate of
b1,..., bp in Eq. (1) can be derived by regressing Yon these
orthogonal components. Resultant estimates of b1,..., bp are
mostly zero due to the sparse loadings in ωj, j = 1, 2,.... This
algorithm is computationally efficient as it only involves
constructing penalized leading principal components.

POCRE-LDA
POCRE can efficiently construct orthogonal components
by excluding insignificant SNPs, and therefore simulta-
neously identify significant SNPs for GWAS [5]. In a case-
control GWAS, we can define the response variable using
the group membership, i.e., yi = 1 if individual i is from
the case population, and yi = -1 otherwise. Then,
regressing Y = (y1,..., yn)

T on X using POCRE implements
LDA with threshold c = 0. Indeed, the resultant

b jj

p
X j=∑ 1

is a penalized version of Fisher’s LDA

direction [6], with bj estimating bj. We therefore call it
POCRE-LDA, with the tuning parameter l elicited by
employing a 10-fold cross-validation and considering

candidates l Œ {0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92,
0.94, 0.96, 0.98, 1}.

We applied POCRE-LDA to the rheumatoid arthritis (RA)
case-control data in Genetic Analysis Workshop (GAW) 16.
Of the 545,080 SNPs, 490,613 (90.2%) SNPs and all 2,062
individuals (868 cases and 1,194 controls) were kept for
our analysis after using PLINK [7] to preprocess the data
and control the data quality. To control the underlying
population structure, EIGENSTRAT [8] was used to derive
the first 10 principal components of the genome-wide
genotype data. Then POCRE-LDA was applied separately to
each chromosome. The effects of the 10 principal
components constructed by EIGENSTRAT were controlled,
where, for each chromosome, only the first several
principal components were identified to be associated
with the case/control status (results not shown).

Results
The results of our analysis are shown in Figure 1, where
the estimated effect size of each SNP is plotted against
the physical location of the SNP. Several clusters of
nonzero effects appear on chromosomes 6, 9, 10, and
18. The cluster on chromosome 6 covers a wide
genomic region ranging from 6p22.1 to 6p21.32 and
includes many genes related to the immune system. For
example, this region contains the human leukocyte
antigen (HLA) genes that encode the major histocom-
patibility complex (MHC) proteins necessary for anti-
gen presentation and the TAP2 gene that encodes a
membrane-associated ATP-binding cassette peptide
transporter necessary for delivering antigens to MHC
class I proteins. Because there are many SNPs with
nonzero effects in each of these clusters, Table 1 reports
only the most significant SNPs within each region. The
gene information corresponding to this genetic location
was obtained from the Ensemble database http://www.
ensembl.org. Several of the genes on chromosome
6 listed in Table 1 have previously been shown to be
associated with RA, i.e., MICB [9], BAT1 [9], TAP2
[10,11], and BTNL2 [12]. The most significant SNP on
chromosome 9 (rs2900180), together with another
significant SNP in that region (rs3761847), are in LD
with the TNF receptor associated factor 1 (TRAF1) gene
as well as the C5 gene. Polymorphisms in these two
genes were previously associated with RA [13,14]. Our
results suggest weak evidence of association for SNPs on
chromosomes 10 and 18 with RA (i.e., only a few SNPs
with nonzero effects occur there). Neither of these
regions has previously been associated with RA. Our
analysis also reveals a large number of individual SNPs
with nonzero effects (Figure 1). These may also reflect
genetic variation controlling the risk for RA. For
example, rs2476601 on chromosome 1 has a nonzero
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effect and is about 71 kb upstream of the PTPN22 gene
identified by Plenge et al. [14] as associated with RA.

Discussion
For general settings with large p small n data, the
superior performance of POCRE over existing methods
such as LASSO and ridge regression were presented in
Zhang et al. [3]. The results of our analysis compare
favorably with the earlier GWAS conducted by Plenge
et al. [14]. This is in spite of the fact that we conducted
only a stage I analysis (i.e., a full GWAS in a single
population) rather than the two-stage approach reported
by Plenge et al. [14] (i.e., follow-up analysis of a sub-set
of highly significant SNPs identified from stage I using a
second, unrelated population). Thus, our new analytical
procedure appears to be more sensitive and less open to
false positives compared with the traditional univariate

approach used by Plenge et al. [14]. In addition to the
multi-SNP approach we used, another difference
between our approach and the method used by Plenge
et al. [14] is that we used the first 10 principal
components for population stratification in our analysis,
whereas Plenge et al. [14] used only the first principal
component. It should be noted that our analysis did not
find an association between the STAT4 gene polymorph-
ism and RA that was previously reported by others [15].
However, this earlier analysis was conducted in a case-
control association study using only 13 candidate genes
selected from within the long (q) arm of chromosome 2
that was previously shown to be in linkage with RA in
642 families of European ancestry [15]. Our data
showing a lack of association between the STAT4
polymorphism and RA is consistent with the previous
GWAS by Plenge et al. [14].

Table 1: Genomic regions and candidate genes identified for case-control study of rheumatoid arthritis in GAW16

Chromosome Genomic region (Mb) SNP with the largest effect Number of genes Candidate genes

6p21.33 31.55-31.62 rs2523647 4 MICB-001; MICB-002; MCCD1-001; BAT1
6p21.32 32.33-32.41 rs10484560 1 C6orf10
6p21.32 32.47-32.69 rs3135363 6 BTNL2; HLA-DRA; AL662796.6; HLA-DRB9;

HLA-DRB5; HLA-DRB1
6p21.32 37.74-32.79 rs9275601 1 HLA-DQB1
6p21.32 32.87-32.97 rs9380326 5 HLA-DOB; TAP2; PSMB8; PSMB9; TAP1
6p21.32 33.21-33.29 rs3130237

rs6901221
5 COL11A2; RXRB; SLC39A7; HSD17B8;

RING1
9q33.1 12.05-12.12 rs2900180 3 DBC1; TRAF1a; C5a

10q11.22 49.64-49.79 rs2671692 2 C10orf64; LRRC18
18q12.1 26.82-26.88 rs2852003 1 DSC3

aThe identified SNPs are in linkage disequilibrium with these genes.

Figure 1
SNPs identified using POCRE-LDA. The x-axis indicates the physical location of each SNP on the chromosome, and the
y-axis represents the absolute value of the estimated coefficient, i.e., |bj|. Genetic regions with multiple SNPs are identified in
chromosomes 6, 8, 9, 10, and 18.
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Conclusion
Combination of the novel method POCRE with LDA
allows us to identify genomic regions (chromosomes 6, 9,
10, and 18) harboring genes associated with the suscept-
ibility to RA. In addition, we identified several single SNPs
that are in LD with genes that have previously been
associated with RA.
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