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Abstract

Genetic markers with rare variants are spread out in the genome, making it necessary and difficult to consider
them in genetic association studies. Consequently, wisely combining rare variants into “composite” markers may
facilitate meaningful analyses. In this paper, we propose a novel approach of analyzing rare variant data by
incorporating the least absolute shrinkage and selection operator technique. We applied this method to the
Genetic Analysis Workshop 17 data, and our results suggest that this new approach is promising. In addition, we
took advantage of having 200 phenotype replications and assessed the performance of our approach by means of
repeated classification tree analyses. Our method and analyses were performed without knowledge of the
underlying simulating model. Our method identified 38 markers (in 65 genes) that are significantly associated with
the phenotype Affected and correctly identified two causal genes, SIRTT and PDGFD.

Background

Although genome-wide association studies based on the
common disease/common variant assumption have
identified many disease-causing genetic variants, the var-
iants usually explain only a small percentage of disease
risk [1]. This suggests that rare variants are potentially
important to the unexplained risk. Common variant
association methods have been extensively developed,
but because the frequency of a rare variant is so low
(less than 1%) it seems imprudent to apply routine
statistical procedures to analyze a low minor allele fre-
quency (MAF). Even in large-scale genome-wide asso-
ciation studies, the rare variant at a single marker
appears so infrequently that typical statistical methods
are invalid or inapplicable.

Given the discrepancy between relatively high com-
mon disease prevalence and low MAF of a rare variant
single-nucleotide polymorphism (SNP), it is biologically
unlikely that the bulk of disease risk is attributable to a
single rare variant. Instead, it is more likely that multiple
rare variants increase disease risk [2]. Accordingly,
although only one rare variant may be expected to
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occur in a given individual, any occurrence from a parti-
cular group of rare variants would explain a relatively
large percentage of disease risk. Although not ideal, it
seems reasonable, and perhaps inevitable, to appropri-
ately group rare variants into artificially made markers
to test the association of the group with a specific
phenotype.

Several methods for exploring associations between
multiple rare variants and disease risk have been pro-
posed [3-6]. A primary goal in each of the current
methods is to construct a set of candidate markers from
the original set of SNPs by collapsing rare variants over
a predefined functional grouping unit, such as a gene or
nearby genomic region. These candidate markers are
then considered in an association analysis. For example,
Morris and Zeggini [6] suggested collapsing by using
either an indicator variable describing the presence of
rare variants or a quantitative variable for the propor-
tion of the variants that carry at least one copy of the
minor allele. Li and Leal [3] proposed using the com-
bined multivariate and collapsing (CMC) method. Their
approach divides markers into prespecified subgroups,
such as genes, and then collapses the genotypes within
each group. These approaches are reasonable, but it is
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useful to explore additional methods. In the data from
Genetic Analysis Workshop 17 (GAW17), for example,
there are so few SNPs in a particular gene that collap-
sing across genes alone does not sufficiently increase the
MAF of a created marker.

We present a method that attempts to remedy some
of the current problems with two chief improvements:
First, SNPs are combined only when they show a joint
effect on the response; and, second, SNPs that are not
in a gene are grouped according to their positions on a
chromosome. We applied this method to the GAW17
data, and our preliminary results suggest that this
approach is promising. Our method and analyses were
performed without knowledge of the underlying simulat-
ing model.

Methods

Data

Our analysis focuses on the GAW17 case-control data
(with outcome phenotype Affected), which consists of
697 unrelated individuals from 17 different population
(race or ethnicity) groups. Four other risk factors are
included in the data: race or ethnicity, age, sex, and
smoking status. There are 200 phenotype replicates
based on the same genotype information. Among the
24,487 SNPs in the data, 87.2% (n = 21,355) of them
have MAF < 0.05, 74.0% (n = 18,131) of them have
MAF < 0.01, and 38.5% (n = 9,433) of them have MAF
< 0.001. See the GAW17 simulation materials for addi-
tional details on the data [7].

Preprocessing

Because we analyzed the data without knowledge of the
underlying simulation process, we undertook two pre-
processing steps: assessing Hardy-Weinberg equilibrium
(HWE) and evaluating population structure by means of
stratification analysis. These steps were taken as a neces-
sary precaution using PLINK [8].

HWE was evaluated to determine whether the genotype
frequencies obtained in the data match those expected
under HWE conditions. Consequently, we excluded from
further analyses all SNPs with MAF > 0.05 and all SNPs
that failed the HWE test at p < 0.0001 [9]. We also
examined potential population stratification and con-
cluded that it is appropriate to consider race or ethnicity
in our association analysis.

Combining SNPs into new markers using the LASSO
technique

The crux of our method is to produce composite mar-
kers using the least absolute shrinkage and selection
operator (LASSO) procedure, which represents SNPs in
a predefined group. This is a two-step process: First,
given a sufficiently large number of rare variant SNPs
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within a gene, we group rare variant SNPs within their
gene. Then all remaining SNPs that are of limited num-
ber in any given gene are grouped according to their
positions on a chromosome. Furthermore, SNPs are
combined only when they show a joint effect on the
response using the LASSO method [10].

Specifically, we first run the LASSO procedure on
SNPs within the same gene and then again on the
sparse SNPs within a group that spreads over different
genes. A 0—1 dummy variable is created for each SNP
based on the presence or absence of the rare variant.
Then, linear combinations of the selected dummy vari-
ables are considered by using the LASSO procedure.
Even though most of the dummy variables are 0, their
linear combination is far more likely to be nonzero. In
fact, we include only those linear combinations that are
nonzero in at least 5% of the subjects. This ensures that
the new markers are not rare.

Covariates can be readily incorporated into the
LASSO technique by treating them as additional predic-
tive variables. If particular covariates are known to be
significantly associated with the phenotype, then they
will not be penalized when running the LASSO proce-
dure. Otherwise, the covariates are also penalized and
subject to selection. In our analysis of the GAW17 data,
the covariates (race or ethnicity, age, sex, and smoking)
were not penalized. The Akaike information criterion
(AIC) was used to select the best LASSO tuning para-
meter (the penalizing coefficient) corresponding to the
best-fitting model. The entire LASSO path was com-
puted using the R package glmnet [11].

Results and discussion

The GAW17 data consist of 200 phenotype replications
based on the same genotype information; this affords us
the ability to conduct our marker selection method on
one of the replicates and to use the remaining 199 repli-
cations to evaluate the performance of our method. We
generated new markers on the first phenotype replica-
tion according to the SNP screening process, as intro-
duced in the Methods section.

To take advantage of the remaining 199 phenotype
replications based on the same genotype information, we
assessed our new markers using an association analysis
with the phenotype Affected. Any appropriate association
method could have been used, although we opted to eval-
uate performance by conducting classification tree ana-
lyses [12] on the remaining 199 replications.

The classification analysis considered all acceptable
markers produced by our method and adjusted for sex,
age, smoking status, and race or ethnicity covariates.
Thus for each replicate we constructed a classification
tree using the same 493 markers and the phenotype
Affected; 199 classification trees were constructed in
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total. We used the R package rpart for this analysis and
applied the default setting of the rpart function. We
took advantage of all the simulated replicates to evaluate
the effectiveness of our method. In practice, our method
can be used with or without replicates. When there are
no additional phenotype replications, markers can be
constructed and then used to build a tree. To evaluate
the significance of the identified markers, one can gen-
erate additional data under the null hypothesis by ran-
domly permuting affection status. This has been shown
to be an effective technique in previous studies [13]. In
the present case, however, further investigation is neces-
sary to evaluate issues related to possible overfitting.
Heuristically, more frequently appearing markers across
all of the 199 association analyses have a higher chance of
contributing to the phenotype. For each of the 199 con-
structed association analysis trees, the null hypothesis is
that the outcome phenotype, Affected, is independent of
the markers, conditional on the covariates. Our screening
process, as described in the Methods section, produced
493 nonrare linear combinations of the dummy variables
(made from SNPs). Thus under the null hypothesis of no
association (independence) between phenotype and any
marker, each of the 493 generated markers has an equal
chance of being selected to split a node in a tree. The
probability that a marker will be selected at any particular
split is 1/493. In addition, under the null hypothesis of

Table 1 Top identified signals: frequency table of tree
regression using LASSO markers, n = 199

Frequency Chromosome Gene

55 1 LAMB3

49 5 PCLKC

40 6 MDNT1

34 4 PDLIMS

31 1 KIF17

28 10 SIRT1¥ HERC4, MYPN, PBLD, CXXC6, CCAR],

VPS26A, HK1, C100RF35, H2AFY2, AIFM?2,
LRRC20, EIF4EBP2, NODAL, KIAA1274, PRF1,
ADAMTS 14, PCBD1, SLC29A3, CDH?23,

CAMK2G

28 18 TXNDC2

28 20 CYP24A1

26 18 EMILIN2

26 1 ARHGEF10L

23 17 ARHGEF15

23 3 GOLGB1

22 1 KIAAO133

19 2 LY75

19 7 RELN

18 " PDGFD*

18 21 BRWDI

18 6 POUS5F1

Asterisks indicate correctly identified markers.
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independence, whether the marker is selected as a splitting
variable in a previous split does not effectively change the
probability that the same marker will be selected as a split-
ting variable in subsequent splits.

Denote the size (number of splits) of the ith tree for
i=(1,2,..,199) as s;, and denote the total number of

199
s There-
i=1

fore under the null hypothesis of no association, the
number of times that a specific split occurs across all
199 trees follows a binomial distribution Bin(S, 1/493).
Although there are several ways to adjust for the false-
positive rate resulting from multiplicity, we used the
Bonferroni correction to err on the side of caution.
Thus using a Bonferroni-corrected significance level of
0.05, we find that the genome-wide-significance level is
0.05/493. Therefore a particular split is considered gen-
ome-wide significant if it meets or exceeds the quantile
value of 0.05/493 under Bin(S, 1/493); therefore 14
occurrences across the 199 analyses is the critical value.

Our method identified 38 newly generated markers
(composed of 65 genes) that are significantly associated
with the phenotype Affected. The mean number of mar-
kers used per tree was 11.37 with a standard deviation
of 3.98. In Table 1, we report the 18 new markers that
appeared most frequently across each of the 199 trees.
Aside from the sixth most significant marker, which is
composed of multiple genes, all of the other 17 markers
are composed of only one gene. Two causal genes,
SIRTI and PDGFD, are correctly identified [7]. Both
genes include multiple SNPs whose coefficients in the
simulation model are relatively large (known after the
simulation model was revealed).

splits selected by all 199 trees as S = Z

Conclusions
We propose a novel approach to analyzing rare variant
data by incorporating LASSO variable selection. This is
a relatively easy-to-implement approach. The results
from analyzing the GAW17 data suggest that the new
approach can be useful for analyzing rare variant data.

We made use of all phenotype replicates provided by
GAW17; the first replicate was used to generate mar-
kers, and the remaining replicates were used to evaluate
the performance of the proposed method. In a real data
analysis, however, the goal is typically to apply, not eval-
uate, the method. Chen et al. [13] presented a technique
to evaluate significance that has proven to be successful.
Their method centers on creating additional data sets
that are generated under the null hypothesis by ran-
domly permuting affection status. Additional investiga-
tion is necessary to assess possible overfitting.

Our method and analyses were performed without
knowledge of the underlying simulating model. It should



Brennan et al. BMC Proceedings 2011, 5(Suppl 9):5100
http://www.biomedcentral.com/1753-6561/5/59/5100

be noted, however, that the false-positive rate from the
GAW17 data analysis was high because of the low level of
signal, in particular, the low MAF of the rare variant SNPs.
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