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Abstract

Genome-wide association studies have been firmly established in investigations of the associations between
common genetic variants and complex traits or diseases. However, a large portion of complex traits and diseases
cannot be explained well by common variants. Detecting rare functional variants becomes a trend and a necessity.
Because rare variants have such a small minor allele frequency (e.g., <0.05), detecting functional rare variants is
challenging. Group iterative sure independence screening (ISIS), a fast group selection tool, was developed to
select important genes and the single-nucleotide polymorphisms within. The performance of the group ISIS and
group penalization methods is compared for detecting important genes in the Genetic Analysis Workshop 17 data.
The results suggest that the group ISIS is an efficient tool to discover genes and single-nucleotide polymorphisms
associated to phenotypes.

Background
Understanding the inherited basis of genetic variation in
human health and disease is currently one of the most
challenging tasks. Genome-wide association studies have
been used to establish the statistical association between
hundreds of loci across the genome and common com-
plex traits. Although this approach has brought substan-
tial knowledge and understanding of the diverse
molecular pathways that underlie specific diseases, more
evidence shows that a large portion of complex diseases
cannot be explained by common genetic variants [1,2].
Therefore alternative approaches are needed to detect
and analyze rare variants associated with disease sus-
ceptibility genes. Although statistical methods for the
detection of common functional variants (e.g., with
minor allele frequencies [MAF] > 0.05) have been exten-
sively developed and successively applied to numerous
studies, methods for detecting rare functional variants
are limited. Some methods developed for analysis of
common variants can be easily extended to rare variants,
for example, single-marker test, multiple-marker test,

and collapsing methods, but their performance may not
be optimal [3-5].
The primary purpose of this paper is to analyze quan-

titative traits Q1 and Q2 in replicates 1–200 of the
Genetic Analysis Workshop 17 (GAW17) simulated
mini-exome data [6]. We study the GAW17 data set
using modern ultra-high-dimensional model selection
and group selection techniques. Given the natural group
structure (i.e., genes) among single-nucleotide poly-
morphisms (SNPs), group selection tools can select the
groups that consist of a number of weak predictors (i.e.,
SNPs with small MAFs) whose effect as a group on the
phenotypes could be significant. In the context of the
GAW17 data set, these weak predictors are just rare
genetic variants. Contrary to collapsing methods, mod-
ern ultra-high-dimensional model selection techniques
consider the joint effect among groups as well as among
individuals and avoid oversimplification of the model.
We propose group iterative sure independence screening
(ISIS) for gene and SNP selection. We apply the method
to analyze the GAW17 data and to compare it with
penalized likelihood methods, such as the group least
absolute shrinkage and selection operator (LASSO) and
the group minimax concave penalty (MCP) in terms of
the true significant genes (i.e., genes with significant
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SNPs) in the simulated GAW17 data. Functional var-
iants are referred to as important variants throughout
the text.

Methods
Because the SNPs are naturally grouped by genes, we
consider a linear model with J groups of variables:

y X Xj j

j

J

= + = +
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where y is an n × 1 response vector, Xj is an n × pj
matrix corresponding to the jth group of variables, bj is
a pj × 1 coefficient vector, and ε is a random noise vec-
tor with normal distribution. Denote X = (X1, …, XJ )
and b b b= ( , , )1

T
J
T T .

We assume that the model is bilevel sparse, which
means that only a small number of bj are nonzero vec-
tors and, moreover, that each nontrivial bj is itself a
sparse vector. In our analysis of the GAW17 data set,
the response y is the quantitative phenotype Q1 or Q2,
and the predictors are the 24,487 SNPs grouped in
3,205 genes. The bilevel sparse assumption, interpreted
in this study, says that only a small number of genes are
related to the phenotype of interest and that only some
of the SNPs in these related genes are important. The
assumption on sparsity plays a critical role in high-
dimensional statistical modeling. The bilevel sparse
assumption is appropriate for models with grouped
predictors.
Because the GAW17 data are mini-exome human

data, we use 0, 1, and 2 to denote genotypes AA, Aa,
and aa, respectively. Thus each column in the design
matrix X consists of the numbers 0, 1, and 2. Among
the 24,487 SNPs in the data set, there are 9,433 SNPs
with a MAF of 0.07% [= 1/(697 × 2)]; that is, this is the
smallest MAF in the GAW17 data because only 1 indivi-
dual out of 697 individuals has a variant at each such
SNP locus. The fact that 9,433 is much greater than 697
makes no statistical model identifiable. Because of the
nonidentifiability of the model, it is necessary to con-
sider the group (gene) selection.
Many high-dimensional model selection and group

selection techniques have been developed recently. One
of the most popular methods is the penalized likelihood
method, such as the LASSO, the smoothly clipped abso-
lute deviation (SCAD) penalty, the MCP, and their
extensions for group selection (e.g., group LASSO and
group MCP) [7-11]. Two popular algorithms are used to
find the maximizer of the penalized likelihood. The first
algorithm is the least angle regression (LARS) algorithm
and its extensions [12]. It is efficient when the number
of parameters (p) is comparable with the number of

samples (n). However, when p is ultrahigh, as in our set-
ting (24,487 potential predictors with only 697 observa-
tions), the LARS algorithm usually cannot be applied.
The second algorithm is coordinate descent, which opti-
mizes a target function with respect to a single variable
at a time, iteratively cycling through all variables until
convergence is reached [13]. This method is even faster
than LARS and can converge to the same solutions as
LARS in many cases. However, it is unknown whether
the two methods work well in the ultrahigh setting.
An alternative method for model selection that is dif-

ferent from the penalization approach is correlation
learning, for example, sure independence screening (SIS)
and iterative sure independence screening (ISIS) and
their extensions for the group selection, called group
SIS and group ISIS [14][15]. Suppose that there are J
groups of variables, denoted by G1, …, GJ. In the first
step of this approach, regression is performed using a
single group of variables for each Gj, j = 1, …, J. (Here,
if the number of variables in Gj is small, we can simply
perform a least-squares regression. Otherwise, when the
size of Gj is large, we can use penalized regressions
[LASSO or SCAD] or greedy algorithms [forward step-
wise selection] to select the model and to estimate the
coefficients.) After the first step, the residual sum of
squares (RSS) is calculated by dividing by the degrees of
freedom (df) for each regression using a single group.
Then, the groups are ranked, and the top k groups are
selected on the basis of the smallest RSS/df value. This
is the main procedure for the group SIS method.
The group ISIS is just the iterative version of group

SIS. First, one or several groups, say, Gi1, …, Gik, are
selected using group SIS. Then, regression is performed
using these selected groups together with a single new
group from the rest of the groups for each of the new
groups. Next, all the new groups are ordered by the
RSS/df values, and top groups with the smallest RSS/df
values are selected and added to the pool of selected
groups. This process is iterated until some criterion is
met. Note that this version of group ISIS corresponds to
a version of ISIS introduced by Fan et al. [15], which
improves the original ISIS given by Fan and Lv [14].
Group SIS and group ISIS are general strategies, and

they have many variants in different applications. In this
paper, we describe two procedures related to group ISIS
for gene selection and apply them to analyze the
GAW17 data. In the GAW17 data, the phenotypes may
have strong associations with factors such as sex, age,
and smoking. Therefore these factors are always consid-
ered important by default.
For procedure 1 we preset a maximal iteration K (12

or 15 in our study) and a constant C (5 in our simula-
tion). In the first step, we perform a regression using
each single group Gj and sex, age, and smoking, where j
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goes from 1 to J. We restrict the model size to at most
C + 3 when we do the regressions. For example, if the
jth group Gj consists of 12 variables, we use a forward
stepwise selection method to select 5 among those 12
variables besides sex, age, and smoking. Then, we rank
the RSS/df values for all groups. After ranking, we select
the group, denoted by G(1), with the lowest RSS/df value
in the model. At the kth iteration, we perform a regres-
sion using selected groups G(1), …, G(k−1), sex, age, and
smoking together with a single group for each group
from the rest. We restrict the whole model size to at
most Ck + 3 when we do the regressions. Then, we
select the new group G(k) by ranking the RSS/df values.
The procedure ends when k >K. In short, we select one
group each time until the kth iteration. As we will see,
this procedure can be considered a special case of pro-
cedure 2. However, as the counterpart of forward step-
wise selection in the setting of group selection,
procedure 1 is an interesting procedure in itself. There-
fore we include it in our numeric studies.
Procedure 2 is similar to procedure 1 except that it

selects multiple groups each time and allows deletion.
To make the algorithm more efficient, we select k0 = 5
groups with the lowest RSS/df values at each iteration.
After adding these five new groups, we do group selec-
tion immediately and keep only the selected groups
before entering the next iteration. The procedure stops
when it is stable, that is, when it deletes newly selected
groups in the group selection. We use group LASSO
and group MCP with either the Akaike information cri-
terion (AIC) or the Bayesian information criterion (BIC)
for group selection in the deletion step and discard the
groups that are not selected by group LASSO or group
MCP. We find that the procedure usually stops within
10 iterations, so we set the maximum number of itera-
tions at 10. Group MCP and group LASSO are

implemented using R package grpreg and can also be
directly applied to select important genes. It is interest-
ing to compare procedure 1 and procedure 2 with these
methods.

Results
Two phenotypes of Q1 and Q2 are studied as interest-
ing responses in this paper. Because there are 200 repli-
cates of data sets in GAW17 and because each replicate
has a certain amount of noise, we consider three noise
levels (low, medium, and high). In the low noise level
case, we take average of 200 replicates as the response
variable; the medium noise level refers to the average of
10 replicates. For the high noise level, only one replicate
is considered. We select the first replicate as an example
of high noise data to compare the different selection
methods. Other individual replicates could have been
used, but the same conclusion is obtained.
Both group ISIS procedures (procedure 1 and proce-

dure 2) are used for gene selection. In particular, for
procedure 2 we apply group MCP and group LASSO by
means of the AIC and BIC in the deletion step of each
iteration. We also compare procedure 1 and procedure
2 with the penalization approaches (group MCP and
group LASSO). The results are listed in Table 1. One
can see that group ISIS can select most of the important
genes with a small number of false positives from a
huge pool when the noise level is low or medium.
To compare these methods more carefully, we applied

them to 20 data sets with medium noise level. The data
were obtained by taking the average of replicates 1–10,
11–20, …, 191–200. The results are summarized in
Table 2. It seems that the performance of the penalized
likelihood methods highly depends on the penalty struc-
ture (group LASSO or group MCP) and information cri-
terion (AIC or BIC). Group MCP with BIC performed

Table 1 Comparisons of penalized likelihood methods and group ISIS procedures 1 and 2 at three different noise
levels

Noise
level

Penalized likelihood method Group ISIS procedure
1

Group ISIS procedure 2

Group
MCP

(with AIC)

Group
MCP

(with BIC)

Group
LASSO

(with AIC)

Group
LASSO

(with BIC)

Group
MCP

(with AIC)

Group
MCP

(with BIC)

Group
LASSO

(with AIC)

Group
LASSO

(with BIC)

Q1

Low 45/4 8/4 168/1 168/1 12/5 8/5 5/4 4/4 4/4

Medium 89/5 10/4 216/1 147/1 12/5 9/5 7/5 5/5 3/3

High 233/3 121/3 233/1 177/1 12/2 24/2 22/2 13/2 13/2

Q2

Low 41/12 9/6 101/6 37/6 15/12 13/12 7/7 11/11 9/7

Medium 55/11 11/6 176/4 74/3 12/9 19/8 8/6 20/8 12/10

High 250/8 125/5 259/1 259/1 15/0 35/1 33/1 19/1 24/1

In group ISIS procedure 2, penalized likelihood methods (group LASSO and group MCP) were used in the deletion step. The number of selected genes and the
number of selected important genes (true positives) are reported.
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best among all four methods we investigated. We see
that group ISIS procedure 2 performed well with lower
numbers of false positives and lower false discovery pro-
portions compared with penalized likelihood methods.
Furthermore, based on the result of group ISIS, pena-
lized likelihood methods or other methods can be
applied in the second stage to select important SNPs. In
fact, as a by-product in the final iteration of procedure
2, group MCP does perform SNP selection within
selected genes (see Table 3). For example, in the case of
low noise level Q2, The group MCP procedure 2 with
AIC selected 13 genes with one false positive (OR1Q1)
and one false negative (INSIG1). The procedure became
stable at iteration 5. In the final deletion step, group
MCP with AIC selected 13 genes among 18 and 32
SNPs within these 13 selected genes. We found only 3
false-positive SNPs (2 of them from OR1Q1 and 1 from
SREBF1) among these 32 SNPs. Group MCP is quite
aggressive for the individual selection within groups.
One could use other methods to lower the number of
false negatives regarding SNP selection.
Although it is unlikely in practice, when additional

information is known in advance (e.g., all important
SNPs are nonsynonymous or have MAF less than 0.2),
we can filter out parts of the SNPs first and apply group
ISIS to the rest. There are 13,572 nonsynonymous SNPs
in 2,196 genes and 23,131 low-MAF (<0.2) SNPs in 3,100
genes. For the phenotypes Q1 and Q2, all important
SNPs are nonsynonymous and have low MAF, so we lose
nothing by searching among the restricted data set. We
applied group ISIS to these data sets and found that the
results were almost identical with the results reported in
Table 1. Therefore we conclude that ultra-high dimen-
sionality and existence of common variants (say, MAF >
0.2) hardly influence the performance of group ISIS. That
is one of the main advantages of group ISIS.
The high noise level is the main reason that no

method works well using only one replicate of the data.

Besides that, to understand why some genes (e.g.,
VEGFC for Q1) cannot be selected even for the low
noise data, we checked the data carefully. We found
that SNP C4S4935, the only important SNP in gene
VEGFC, is identical to SNP C13S348 in gene FLT1 in
the design matrix. Gene FLT1 includes many SNPs
related to Q1. So if FLT1 is selected, VEGFC does not
have any priority to be selected. In short, the

Table 2 Comparisons of penalized likelihood methods and group ISIS procedure 2 at medium noise level over 20 data
sets

Noise level Penalized likelihood method Group ISIS procedure 2

Group MCP
(with AIC)

Group MCP
(with BIC)

Group LASSO
(with AIC)

Group LASSO
(with BIC)

Group MCP
(with AIC)

Group MCP
(with BIC)

Group LASSO
(with AIC)

Group LASSO
(with BIC)

Q1

NTP 4.2 (0.4) 3.7 (0.6) 1.1 (0.4) 1.1 (0.3) 4.3 (0.5) 3.8 (0.5) 4.3 (0.6) 3.0 (0.9)

NFP 86.1 (6.2) 7.0 (1.9) 205.6 (23.8) 117.2 (20.4) 5.0 (1.8) 1.1 (0.9) 2.1 (2.8) 0.1 (0.3)

FDP (%) 95.3 (0.6) 64.2 (9) 99.5 (0.2) 99.0 (0.3) 52.2 (10.7) 18.8 (14.1) 21.9 (26.5) 2.1 (8.3)

Q2

NTP 10.9 (0.9) 6.3 (0.6) 3.5 (1.3) 3.2 (1.3) 8.4 (1.2) 5.8 (1.5) 8.6 (1.6) 8.2 (1.8)

NFP 55.7 (6.8) 7.5 (2.2) 160.3 (30.0) 99.0 (27.1) 10.8 (3.7) 2.3 (1.3) 10.6 (2.0) 4.2 (2.5)

FDP (%) 83.5 (2.1) 53.2 (9.2) 97.7 (1.1) 96.8 (1.4) 55.0 (9.8) 27.9 (14.8) 55.1 (6.3) 31.6 (15.0)

Reported are the mean and standard error (in parentheses) of the number of true positives (NTP), the number of false positives (NFP), and the false discovery
proportion (FDP).

Table 3 Genes and SNPs selected by group ISIS
procedure 2 (group MCP with AIC) for the low noise data

Trait Selected
gene

Selected SNPs

Q1 FLT1 C13S348*, C13S431, C13S522, C13S523, C13S524

LRP1B* C2S3362*

KDR C4S1861, C4S1878, C4S1884

PRR4* C12S706*

ARNT C1S6533, C1S6542

VEGFA C6S2981

HIF1A C14S1734

C20ORF26* C20S640*

Q2

VNN3 C6S5441, C6S5446, C6S5449

VNN1 C6S5378, C6S5380

BCHE C3S4859, C3S4869, C3S4873, C3S4874, C3S4875

SIRT1 C10S3048, C10S3050

SREBF1 C17S1019*, C17S1024, C17S1043, C17S1046,
C17S1055

VLDLR C9S376, C9S377, C9S444

PDGFD C11S5292, C11S5301, C11S5302

GCKR C2S354

LPL C8S442, C8S530

PLAT C8S1741, C8S1758

VWF C12S211

OR1Q1 C9S3735*, C9S3737*

RARB C3S679

Asterisks represent false positives.
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nonidentifiability may bring up some issue in gene selec-
tion when some important genes have few related SNPs.

Discussion and conclusions
In this study, we used modern ultra-high-dimensional
model selection tools to detect important genes and
important SNPs related to the phenotypes of interest.
Group SIS and group ISIS were developed to conquer
the difficulty of ultra-high dimensionality and noniden-
tifiability. As group LASSO is to LASSO, group SIS (or
group ISIS) is the counterpart to SIS (ISIS) in the set-
ting of group selection. These group selection tools
work well under the bilevel sparse assumption. We used
the penalized likelihood methods and group ISIS proce-
dures to analyze the GAW17 data and compared their
performance in recovering important genes associated
with phenotypes Q1 and Q2. It seems that the group
ISIS approach performs better than the penalized likeli-
hood methods in terms of number of false positives and
false discovery proportion. In particular, the proposed
methods work well when additional replicates are avail-
able, that is, at the low and medium noise levels. When
only one replicate with high noise is available, it seems
that no method works well.
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