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Abstract

Genome-wide association studies have successfully identified many common variants associated with complex
human diseases. However, a large portion of the remaining heritability cannot be explained by these common
variants. Exploring rare variants associated with diseases is now catching more attention. Several methods have
been recently proposed for identification of rare variants. Among them, the fixed-threshold, weighted-sum, and
variable-threshold methods are effective in combining the information of multiple variants into a functional unit;
these approaches are commonly used. We evaluate the performance of these three methods. Based on our
analyses of the Genetic Analysis Workshop 17 data, we find that no method is universally better than the others.
Furthermore, adjusting for potential covariates can not only increase the true-positive proportions but also reduce
the false-positive proportions. Our study concludes that there is no uniformly most powerful test among the three
methods we compared (the fixed-threshold, weighted-sum, and variable-threshold methods), and their
performances depend on the underlying genetic architecture of a disease.

Background
In the past several years, genome-wide association stu-
dies (GWAS) have successfully identified many common
single-nucleotide polymorphisms (SNP) (say, minor
allele frequency [MAF] > 5%) associated with complex
human diseases. Despite the findings from GWAS, a
large portion of the remaining heritability cannot be
explained by these common variants [1]. The impor-
tance of detecting rare variants has thus been recog-
nized. However, exploring rare variants that are
associated with diseases is challenging because of their
low frequencies and individually small contributions to
the susceptibility to a disease [2]. Recently, several meth-
ods have been proposed for detecting rare variants (for
an overview see Dering et al. [3]). Most of these meth-
ods pool signals of multiple rare variants into a func-
tional unit, such as a candidate gene, and then test the
association between the pooled signal and the disease
[4-7]. For these methods, the choice of a threshold to

discriminate rare variants from common variants plays
an important role. If the threshold is too high, variants
with relatively high MAFs will dominate the results of
association tests for the genes. On the other hand, if the
threshold is too low, the statistical power of the associa-
tion tests will tend to become unnecessarily low. The
specification of a threshold is crucial to the performance
of a pooled association test. In this paper, we evaluate
the performance of several methods using the simulated
data of unrelated individuals from Genetic Analysis
Workshop 17 (GAW17) [8].

Methods
Three analysis methods
Some of the proposed pooling methods first specify a
fixed threshold for the MAF and then perform associa-
tion tests on the set of variants with MAFs smaller than
that threshold [4,6]. The weighted-sum method [5]
extends this idea and weights each variant by the inverse
square root of the expected variance based on the allele
frequencies. The larger the MAF, the smaller the weight
given to that variant. However, this weighting scheme
restricts the effect of a functional variant to be
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statistically related to its allele frequency, which may not
be plausible in some situations. To address the issue of
a preset threshold for the MAF, Price et al. [7] proposed
a variable-threshold (VT) approach. The VT approach
groups rare variants together by searching for an opti-
mal threshold that maximizes the difference between
trait distributions for subjects with and without the rare
variants. Using the data from GAW17, we compare the
performance of the VT method with the performance of
the weighted-sum (WS) method [5] and the fixed-
threshold method of Morris and Zeggini [6] with thresh-
olds of 1% and 5% (denoted T1 and T5, respectively).

Data
We use the GAW17 data for 697 unrelated individuals
with variants on 22 autosomal chromosomes. There are
24,487 SNPs located in 3,205 genes on these chromo-
somes. We use the start and end positions (in base pairs)
of each gene to pick the SNPs falling within the bound-
aries of that gene. We analyze all the phenotypes avail-
able: Q1, Q2, Q4, and the binary trait (Affected). All the
200 simulated replicates were studied. To evaluate the
performance of the four tests (T1, T5, WS, and VT), we
requested the simulation answers and compared the
answers with the results obtained from the four tests.

Variable threshold software
All the analyses were performed using the VT test soft-
ware (http://genetics.bwh.harvard.edu/rare_variants/) of
Price et al. [7]. The VT software performs T1, T5, WS,
and VT tests in each analysis. The statistical models are
all based on linear regressions:
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where y is the phenotype, xi is the number of the ith
rare variant in gene G, wi is the weight given to the ith
rare variant, and b̂0 and b̂ are the estimates of the
regression coefficients. For the T1 (or T5) test, wi equals
1 if the frequency of the ith variant is less than 1% (or
5%) and 0 otherwise. For the WS test,
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where pi is the allele frequency of the ith variant.
For the VT test, a z-score:
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is computed for each allele frequency threshold T,
where SE represents the standard error. Let zmax be the
maximum z score among all possible values of T; then,
the significance of zmax is assessed by permutation of
phenotypes. Suppose that we perform p permutations
and therefore have zmax,1, zmax,2, …, zmax,p, which are the
maximum z scores obtained at their optimal thresholds
T1, T2, …, Tp, respectively. To ensure the validity of the
VT test, the software allows T1, T2, …, Tp for permuted
data to be different from the optimal threshold T for
the original data. The VT software then compares zmax

with zmax,1, zmax,2, …, zmax,p to determine its statistical
significance.
When we performed the T1, T5, WS, and VT tests

with the VT software, each p-value was calculated based
on 100,000 permutations. To increase the computation
speed, the VT test uses linear regression instead of
logistic regression to analyze all phenotypes, including
the binary trait. To understand the influence of adjust-
ment for covariates, we compared the results when
ignoring all covariates with the results obtained when
adjusting for Age and Smoking status. We first obtained
the residuals by regressing the phenotypes on Age and
Smoking status, and then the residuals were regarded as
the adjusted phenotypes and were analyzed by the VT
software.

Results
Type I error rates
The phenotype Q4 is not related to any of the 3,205
genes, so we use this part of the results to evaluate type
I error rates. Given a significance level a, we estimate
the type I error rate using:
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where I(·) is the indicator function, pi,r is the p-value
of the ith gene in the rth replicate, Tg is the set formed
by all genes, and |Tg| is the number of genes in Tg.
Note that the set Tg varies with different methods.
Because the T1 test considers only genes that have at
least one SNP with MAF less than 1%, the total number
of genes considered by the T1 test is 2,485. Similarly,
the T5 test considers only genes that include at least
one SNP with MAF less than 5%, and the total number
of genes considered by the T5 test is 2,881. The WS
and VT tests are performed for all genes without pre-
specifying a threshold, so the total number of genes
considered by both of these tests is 3,205.
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Table 1 shows the type I error rates for the four tests.
When we ignore all the covariates, the type I error rates
are generally inflated for the WS and VT tests and
slightly inflated for the T5 test. After adjusting for Age
and Smoking status, this inflation of type I error rates
disappears. We further discovered that the inflation of
type I error rates disappeared so long as Age was
adjusted, but it remained if only Smoking status was
adjusted. To verify this, we deliberately let Age be the
outcome variable and tested its association with genes.
We found that the rates of rejection of no association
(between genes and Age) were generally larger than the
nominal significance levels (when the significance level
was set at 5%, the average rejection rates were 7.6%,
11.9%, 11.0%, and 12.4% for the T1, T5, WS, and VT
tests, respectively). However, when we let Smoking sta-
tus be the outcome variable and tested its association
with genes, the average rejection rates matched the
nominal significance levels. This suggests that the
observed inflation of type I error rates comes from
some latent confounders (e.g., population stratification
or preferential death of carriers with some particular
genotypes), and we can remove the false-positive find-
ings by adjusting for Age.

ROC curves
The phenotypes Q1, Q2, and the binary trait (Affected)
are related to some genes, so we use the results on
these three phenotypes to evaluate the true-positive pro-
portions and the false-positive proportions. Figure 1 pre-
sents the receiver operating characteristic (ROC) curves
of the four tests. Given a significance level a, we esti-
mate the true-positive proportion using:
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and the false-positive proportion using:
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where Sg is the set formed by disease genes, |Sg| is the
number of genes in Sg, and {Tg\Sg} is the set formed by
genes unrelated to the disease. The set of Sg is provided
by the underlying simulation model.
From the results, all methods perform better for con-

tinuous traits than for the binary trait. For continuous
traits, these methods perform better for Q1 than for Q2.
This is reasonable because Q1 has higher residual herit-
ability. For phenotypes Q1 and Affected, the areas under
the ROC curves (i.e., the AUC) increased when the phe-
notypes were adjusted for Age and Smoking status.
However, adjusting for these two covariates did not
have any influence on the ROC curves for Q2. This is
also reasonable because Q2 is not influenced by any
covariate, according to the underlying simulation model.

Discussion
In this study, we evaluated the performance of three
methods (four tests)—fixed-threshold, weighted-sum,
and variable-threshold methods—for detecting rare var-
iants. The main difference between these methods is the
selection of a threshold to discriminate rare from com-
mon variants. Based on the simulation model for Q1,
most true signals are variants with MAF < 5%, so the
T5 test is the best method. The only two exceptions are
C13S523 (MAF = 6.67%) in gene FLT1 and C4S1878
(MAF = 16.50%) in gene KDR. However, the powers of
the four tests are all high for detecting FLT1 and KDR,
because the two genes include many functional variants.
Excluding C13S523 from FLT1 or excluding C4S1878
from KDR makes no difference to the final results. The
VT test is inferior to the T5 test because of the inclu-
sion of the higher threshold (>5%), which increases
noise and reduces power. When analyzing the pheno-
type Q2, we found that the VT test was the most
powerful method for detecting gene VNN1. However,
both the T1 test and the T5 test performed poorly in
detecting VNN1, because one of the two functional var-
iants in VNN1 is relatively common (MAF = 17%).

Table 1 Type I error rates (results based on analyzing
Q4)

Significance level T1 T5 WS VT

Without adjustment for any
covariate

a = 0.05/3,205 = 1.56 × 10−5 0.00001 0.00002 0.00055 0.00053

a = 0.001 0.00086 0.00272 0.00861 0.00925

a = 0.005 0.00468 0.01055 0.02279 0.02384

a = 0.01 0.00922 0.01828 0.03454 0.03596

a = 0.05 0.04575 0.06324 0.09094 0.09546

a = 0.1 0.08971 0.10888 0.13954 0.14894

With adjustment for Age and
Smoking status

a = 0.05/3,205 = 1.56 × 10−5 0.00001 0.00002 0.00001 0.00001

a = 0.001 0.00096 0.00094 0.00095 0.00095

a = 0.005 0.00473 0.00491 0.00485 0.00485

a = 0.01 0.00956 0.00973 0.00966 0.00972

a = 0.05 0.04918 0.05040 0.05037 0.04990

a = 0.1 0.09906 0.10148 0.10159 0.10087
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Therefore, when analyzing Q2, the VT test is slightly
better than the other methods. For the binary trait
(Affected), all tests have similar (poor) performances.
This is because the binary trait was determined by a
model including noise (Q4). Not surprisingly, analyzing
this trait is more challenging than analyzing Q1 or Q2.

Based on our results, we found that inflated type I error
rates were caused by potential confounders not adjusted
for in the models (Table 1). If a phenotype is related to
some covariates, adjusting for these covariates can also
increase the true-positive proportions (Q1 and Affected
in Figure 1). However, if a phenotype is not related to
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Figure 1 ROC curves for the four tests. The top row presents the results without adjustment for any covariate; the second row presents the
results with adjustment for Age and Smoking status. In the parentheses are the areas under the ROC curves. In the bottom row we show the
combined ROC curves without and with adjustment for covariates.
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the covariates, adjusting for them has no influence on the
true-positive proportions (Q2 in Figure 1).

Conclusions
We evaluated the performance of three methods (fixed-
threshold, weighted-sum, and variable-threshold meth-
ods) in pooling signals of multiple rare variants in a
gene. Based on our analyses for the GAW17 data, we
find that no method is universally better than the
others. Furthermore, adjusting for potential covariates
can not only increase the true-positive proportions but
also reduce the false-positive proportions. Our study
provides an overall evaluation of the three popular
pooled association methods with the GAW17 exome
simulation data. This can provide insights to determine
a strategy for analyzing exome sequencing data.
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