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Abstract

Tiled regression is an approach designed to determine the set of independent genetic variants that contribute to
the variation of a quantitative trait in the presence of many highly correlated variants. In this study, we evaluate
the statistical properties of the tiled regression method using the Genetic Analysis Workshop 17 data in unrelated
individuals for traits Q1, Q2, and Q4. To increase the power to detect rare variants, we use two methods to
collapse rare variants and compare the results with those from the uncollapsed data. In addition, we compare the
tiled regression method to traditional tests of association with and without collapsed rare variants. The results
show that collapsing rare variants generally improves the power to detect associations regardless of method,
although only variants with the largest allelic effects could be detected. However, for traditional simple linear
regression, the average estimated type I error is dependent on the trait and varies by about three orders of
magnitude. The estimated type I error rate is stable for tiled regression across traits.

Background
The assumptions of independence between observations
and between independent variables are a major theoreti-
cal underpinning of much of traditional statistics. How-
ever, because of the linear nature of the genome and the
intrinsically familial nature of genetics, these assump-
tions are often violated when traditional statistical meth-
ods are applied to genetic data. As the density of genetic
markers increases, ultimately encompassing the entire
genome, the correlations between markers increase,
depending in large part on the linkage disequilibrium
structure in the sample. For unrelated individuals a mul-
tiple linear regression approach, including all variants
across the entire genome, would be ideal. However, the

large number of variants relative to the number of sam-
ples and the presence of a large degree of multicolli-
nearity among markers make this approach intractable.
In addition, the inclusion of rare sequence variants,
including several rare variants in the same gene, makes
traditional tests of association problematic because of
the low frequency of many of the variants. In this study,
we use tiled regression [1] to analyze the unrelated indi-
viduals from the simulated Genetic Analysis Workshop
17 (GAW17) data in order to identify the set of variants
that are responsible for the variation in quantitative
traits and to compare the use of uncollapsed and col-
lapsed sequence variants.

Methods
Study population
To examine the data for population substructure, we
first performed a principal components analysis on
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1,356 common SNPs (minor allele frequency [MAF] >
0.2 and r2 < 0.2) with Eigensoft, version 3.0 [2]. The
self-reported ethnicity of each individual was plotted
against the first two principal components. The indivi-
duals could be grouped into three populations (Asian,
African, and European), except for one self-reported
European who was classified in the Asian group. This
individual, NA12829, was removed from all subsequent
analyses, leaving 696 individuals. However, because the
sample sizes for the subpopulations were small, the sub-
populations were considered a single sample. We used
linear regression to adjust and center each quantitative
trait (Q1, Q2, and Q4) for age, sex, and smoking status
in each of the 200 replicates.

Variant coding
We used the genotypes for the 24,473 nonmonomorphic
single-nucleotide polymorphisms (SNPs), including com-
mon and rare sequence variants (collectively referred to
here as sequence variants), as provided (uncollapsed)
and with rare sequence variants collapsed [3,4]. To col-
lapse the rare variants, we used two methods: (1) collap-
sing all variants with a MAF < 0.01 and (2) collapsing
nonsynonymous variants with a MAF < 0.01. The rare
variants were collapsed into a single variant for each
genomic region defined by hot spots (see Tiled regres-
sion section). The derived region-wide collapsed variants
were coded as the presence or absence of any rare allele
within each region. Common variants were left uncol-
lapsed and coded as the number of minor alleles.

Tiled regression
In tiled regression, the genome is divided into indepen-
dent segments based on predefined regions. Recombina-
tion hot spots (i.e., well-defined regions of increased
recombination) are used to delineate regions. The term
tile denotes both the sequence of DNA between two hot
spot regions and a hot spot region itself. Each sequence
variant is assigned to a tile based on its physical posi-
tion. A tile is selected if the multiple linear regression
on all variants in the tile shows a significant relationship
to trait variation (testing the null hypothesis that all var-
iant coefficients are 0) or if the simple linear regression
on any single variant in the tile is significant. A stepwise
regression is then used to select the important indivi-
dual independent variants identified in each selected tile.
Thereafter the significant variants are combined across
tiles in higher-order stepwise regressions within chro-
mosome and then genome levels. The end result is a
multiple linear regression model that includes a set of
variants that independently contribute to trait variation.
An appropriate null distribution for determining the sig-
nificance level of the overall results is being investigated,

and permutation tests will likely be required to obtain
an accurate significance level.

Test of association for uncollapsed and collapsed
sequence variants
We used tiled regression, as implemented in TRAP
(Tiled Regression Analysis Package, http://research.
nhgri.nih.gov/software/TRAP) [5], to identify the set of
independently significant sequence variants that affect
each of the covariate-adjusted quantitative traits and to
compare results from the uncollapsed and collapsed
approaches. Tiles were determined on the basis of the
location of recombination hot spots in Human Genome
Sequence build 36 [6]. We used critical values of 0.1
and 0.01 for the initial screening of the multiple and
simple regressions, respectively. We used a critical value
of 0.01 for entering and retaining variables in the step-
wise regressions. Simple linear regressions (SLRs) were
performed with TRAP and PLINK [7].
We requested the answers for the GAW17 simulated

data and compared resulting sets of significant variants
to the simulation model to examine power and type I
error. We determined measures analogous to average
power and type I error rate.

Results
Results are presented here in detail for uncollapsed var-
iants and for collapsed variants, including only nonsy-
nonymous variants with MAF < 0.01, for the combined
populations for the 200 replicates. Results from the ana-
lysis of collapsed variants including all variants with
MAF < 0.01 were similar to those for the collapsed non-
synonymous variants and are not shown. Results from
both SLR implementations (PLINK and the method
included in TRAP) were nearly identical, as expected.
Results for traits Q1 and Q2 using the tiled regression

method with a critical level of 0.01 are presented in
Figures 1 and 2, respectively. The top track illustrates the
proportion of the 200 replicates (PoR) that were significant
for each causal variant. Similarly, the lower track illustrates
the PoR that were significant plotted against each causal
gene. Figures 1 and 2 demonstrate that collapsing rare var-
iants generally increases the PoR identifying variants found
to be significant, both at the causal variant and gene levels,
although this finding appears to be more pronounced for
variants with smaller effects. However, for Q1, only var-
iants in FLT1 and ARNT had proportions greater than
about 0.3. For Q2, only variants in VNN1 had a PoR
greater than 0.2. Some variants in VNN3, SIRT1, and LPL
were identified (PoR < 0.2), but nearly all the other causal
variants for Q2 were undetectable.
Table 1 presents the PoR for each of the most fre-

quently found variants in the generating model for traits
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Q1 and Q2 significant at the 10−7 significance level for
the SLR and at the 10−2 and 10−7 critical levels for tiled
regression, using the p-values generated for the final
stepwise regression. Table 1 includes only those variants
for which the PoR was greater than 0.2 for any method.
This is roughly analogous to the power of the test for
each variant, ignoring the identical genotypes across
replicates, the correlated phenotypes, and the multicolli-
nearity of the variants. Table 1 also gives the PoR identi-
fying significant variants averaged over all causal
variants for Q1 and Q2. Overall, the average PoR identi-
fying causal variants was quite low for all methods con-
sidered. However, for all the methods considered,
collapsing rare variants increased the average PoR with
significant causal variants compared to methods that
used uncollapsed variants.

Determining a proxy for the type I error was more pro-
blematic because there are two different null hypotheses
that depend on the amount of phenotypic and genotypic
correlation. Table 2 presents the PoR identifying a non-
causal variant, averaged over all the noncausal variants
that were neither located in the same gene with a causal
variant nor correlated with any causal variant (correlation
greater than 0.7 in absolute value). These qualifications
were necessary to avoid including variants that were in
linkage disequilibrium or highly correlated with a causal
variant. We used significance levels of 10−7 for the SLR
and critical values of 10−2 and 10−7 for the tiled regres-
sion. Results are presented for uncollapsed and collapsed
variants for traits Q1, Q2, and Q4. In general, the average
PoR for the uncollapsed variants had roughly the same
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Figure 1 Proportion of 200 replicates identifying each causal
variant and gene significant for trait Q1.
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Figure 2 Proportion of 200 replicates identifying each causal
variant and gene significant for trait Q2.
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magnitude as the average PoR for the collapsed variants.
However, what was particularly striking was that the var-
iation in the average PoR for noncausal variants using
SLR varied by about three orders of magnitude across
traits, ranging from 10−7 to 10−3 for uncollapsed variants
and from 0 to 10−3 for collapsed variants. The average
PoR for noncausal variants was stable across traits for
both critical levels for the tiled regression method with
both uncollapsed and collapsed variants. Although the
PoRs were stable, too many significant noncausal variants
were identified when the tiled regression critical level was
10−7 (about 10−6), and too few noncausal variants were
identified when the critical level was 10−2 (about 10−3).
Although critical values were compared to regression p-
values for variants included in the final tiled regression
model, these values cannot be assumed to represent a
significance level for the entire tiled regression procedure.
Appropriate significance levels for this procedure are cur-
rently being investigated.

Discussion and conclusions
Regardless of the method used, collapsing rare variants
generally increased the proportion of replicates that
identified a significant causal variant. However, the allele
frequency and effect size of the allele for most of the
causal variants were too small to be detected in these

data using these methods. For Q1, only variants in FLT1
had a PoR greater than about 0.5. For Q2, only one var-
iant in VNN1 had a PoR of any sizable magnitude.
Nearly all the other causal variants for Q1 and Q2 were
undetectable.
More troubling was the inconsistency in the average

PoR that identified significant noncausal variants for the
SLR method. A difference of about three orders of mag-
nitude was seen for traditional SLR methods, most likely
caused by differences in the underlying simulation mod-
els for the traits, identical genotypes across replicates,
correlated phenotypes, and, perhaps most important, the
high degree of multicollinearity in the genotyping data.
The lack of agreement between the empirically derived

average PoR and the expected significance levels for the
SLR methods may be due to the alternative null hypoth-
esis problem. Under the null hypothesis of no genetic
component, no causative variants influence the pheno-
type; that is, the phenotype is essentially a normally dis-
tributed random variable. Under the other null
hypothesis, there are no causative variants among the
set of variants considered; however, other unknown cau-
sal variants do, in fact, influence the phenotypic distri-
bution. These unknown causative variants affect the
correlation structure of the phenotypes and may be cor-
related with other known or unknown variants. Trait

Table 1 Proportion of 200 replicates identifying causal variants in traits Q1 and Q2

Trait Gene Variant PoR for uncollapsed variants PoR for collapsed variants
(MAF < 0.01 and nonsynonymous)

TR 10−2 TR 10−7 SLR 10−7 TR 10−2 TR 10−7 SLR 10−7

Q1 ARNT C1S6533 0.245 0.005 0.045 0.31 0.02 0.045

KDR C4S1877 0 0 0.255 0.16 0.005 0.055

C4S1884 0.16 0.015 0.065 0.2 0.01 0.065

C4S1889 0 0 0.255 0.025 0 0.01

FLT1 C13S431 0.475 0.095 0.12 0.495 0.08 0.12

C13S522 0.745 0.115 0.99 0.78 0.165 0.99

C13S523 1 0.72 1 1 0.72 1

C13S524 0.115 0.01 0.39 0.03 0 0.005

Average PoR 7.9 × 10−2 2.5 × 10−2 8.2 × 10−2 1.6 × 10−1 4.8 × 10−2 1.1 × 10−1

Q2 VNN1 C6S5380 0.42 0.01 0.03 0.415 0.025 0.03

Average PoR 2.2 × 10−2 6.3 × 10−4 4.9 × 10−4 7.2 × 10−2 2.7 × 10−3 1.8 × 10−3

TR, tiled regression. SLR, simple linear regression. PoR, proportion of 200 replicates. For the tiled regression, 10−2 and 10−7 are the critical values; for the simple
linear regression, 10−7 is the significance level.

Table 2 Average proportion of 200 replicates identifying noncausal variants in traits Q1, Q2, and Q4

Trait PoR for uncollapsed variants PoR for collapsed variants
(MAF < 0.01 and nonsynonymous)

TR 10−2 TR 10−7 SLR 10−7 TR 10−2 TR 10−7 SLR 10−7

Q1 9.7 × 10−4 5.5 × 10−6 6.8 × 10−4 1.3 × 10−3 7.3 × 10−6 1.0 × 10−3

Q2 1.3 × 10−3 6.2 × 10−6 3.1 × 10−6 1.7 × 10−3 3.8 × 10−6 2.1 × 10−6

Q4 1.3 × 10−3 3.5 × 10−6 2.0 × 10−7 1.7 × 10−3 3.2 × 10−6 0.0

TR, tiled regression. SLR, simple linear regression. PoR, proportion of 200 replicates. For the tiled regression, 10−2 and 10−7 are the critical values; for the simple
linear regression, 10−7 is the significance level.
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Q4 was not generated by specific causative variants but
rather is a polygenic effect, which is essentially a nor-
mally distributed random variable in unrelated indivi-
duals. On the other hand, traits Q1 and Q2 were
generated by known causative variants that were corre-
lated with other noncausative variants [8]. These corre-
lations can increase both the type I error rate and the
power of the test. This may explain the inflated type I
error rate for the SLR methods. The increase in type I
error rate for Q1 is quite large, perhaps reflecting the
presence of causative variants with relatively larger
locus-specific heritability relative to the causative var-
iants in Q2. The tiled regression approach attempts to
minimize these correlations by identifying the set of
independent variants that most affect phenotypic varia-
tion while minimizing the degree of multicollinearity. It
appears from these results that the type I error rates for
tiled regression are stable with respect to the underlying
null hypothesis, although additional work will be
required to determine accurate significance levels for
the entire tiled regression procedure, not just the signifi-
cance levels in the final model.
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