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Abstract

to make these assessments.

We examine the performance of various methods for combining family- and population-based genetic association
data. Several approaches have been proposed for situations in which information is collected from both a subset
of unrelated subjects and a subset of family members. Analyzing these samples separately is known to be
inefficient, and it is important to determine the scenarios for which differing methods perform well. Others have
investigated this question; however, no extensive simulations have been conducted, nor have these methods been
applied to mini-exome-style data such as that provided by Genetic Analysis Workshop 17. We quantify the
empirical power and false-positive rates for three existing methods applied to the Genetic Analysis Workshop 17
mini-exome data and compare relative performance. We use knowledge of the underlying data simulation model

Background

Study designs for genetic association studies fall into two
broad categories: (1) population-based studies that recruit
unrelated individuals and (2) family-based studies that col-
lect some number of related pedigrees. Often, both study
designs are used for a particular investigation. For exam-
ple, when a linkage study has been performed and family
data are collected, follow-up analysis can include associa-
tion using a new unrelated study population. The analytic
methods appropriate for either design differ, thus making
difficult the aggregation of the association metrics across
the study designs. Heuristically, population-based metrics
attempt to quantify a measure of correlation or association
between some function of genotype at a given marker and
the disease phenotype, whereas family-based association
measures use properties of Mendelian transmissions from
parents to offspring and are inherently conditional.
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Because analyzing the disparate types of data in isolation
most often results in nonoptimal statistical power, investi-
gators have proposed several methods for efficiently com-
bining these data. We briefly summarize three methods to
be applied to the Genetic Analysis Workshop 17
(GAW17) data in the Methods section. Each approach is
distinguished by the study designs for which it is appropri-
ate, the assumptions necessary for valid inference, and the
handling of population stratification (whether it is formally
or informally tested or whether it is taken into account by
means of adjustments). Operationally, these methods are
distinguishable by computation and implementation con-
siderations and by empirical performance. We assess the
performance in this paper. Other researchers have investi-
gated the question of relative performance [1]; however,
no simulations have been conducted for comparison.

An important consideration to keep in mind through-
out this investigation is the underlying causal model that
was used to generate the GAW17 data [2]. First, rather
than reflecting the common disease/common variant
hypothesis that the established methods presented
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address, the data-generating mechanism used was consis-
tent with the multiple rare variant or the common dis-
ease/rare variant (CDRV) hypothesis, which suggests that
common disease susceptibility is garnered through multi-
ple rare variants with moderate to high penetrance. Intui-
tively, the current methods do not perform well in
identifying rare single-nucleotide polymorphisms (SNPs);
in this paper we intend to assess this performance and to
motivate possible modifications that would be successful
when the CDRV hypothesis is true. In addition, the dis-
ease was simulated to have > 30% prevalence, which vio-
lates the often-invoked rare disease assumption.

Methods

The first attempts to combine population- and family-
based association data were developed by Nagelkerke et al.
[3], who used a likelihood framework to combine case-
control data with family data by exploiting the likelihood
formulation [4] of the transmission disequilibrium test
(TDT) [5]. This approach assumes Hardy-Weinberg equi-
librium (HWE), random mating, and a multiplicative
model of allelic effect. Although no formal test of the
appropriateness of combining the two types of data has
been developed, we discuss ad hoc procedures.

Epstein et al. [6] generalized this work by relaxing the
assumptions of HWE, random mating, and the assumed
multiplicative mode of inheritance. In addition, they
described a formal test for the appropriateness of combin-
ing case-control and case-trio data by comparing genotype
relative risk (RR) estimates from between-individual and
within-family analyses, respectively. The proposed two-
stage procedure facilitates valid model selection in the pre-
sence of population stratification. Further extensions of
this approach were made by Chen and Lin [7]. Their
method uses weighted least squares to aggregate the dispa-
rate RRs and requires no assumptions for mating-type
distributions.

Epstein et al.’s and Chen and Lin’s methods rely on two
strong assumptions: a rare disease and the absence of
population stratification. Later work has been targeted at
both relaxing the rare disease assumption and adjusting
for population stratification. Zhu et al. [8] used a princi-
pal components strategy to adjust for population stratifi-
cation and to aggregate families and case-control samples
by means of a linear regression framework. Within-family
correlations were empirically estimated from the data
and incorporated into the variance of the test statistic.
Zhang et al. [9] proposed a similar method in which they
defined a score test and used generalized estimating
equations [10] to account for familial correlation. Their
method can be more easily applied to multivariate out-
comes. Other useful approaches, some with a focus on
genome-wide association, have been proposed but are
not evaluated here [11-21].
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Because the approach by Chen and Lin [7] is not
immediately generalizable to pedigrees, we extracted
nuclear families and then sampled 194 trios from the
nuclear families to provide a uniform comparison
between the methods. These sampled data (697 unre-
lated case or control individuals and 582 family mem-
bers from the 194 trios) are used for our comparisons.
We assume an additive mode of inheritance throughout.

Chen and Lin’s method

Chen and Lin’s [7] approach uses the conditional on
parental genotypes (CPG) approach of Schaid and Som-
mer [22] to construct the likelihood of the case-trio
samples. An estimate for the RR is obtained from the
CPG likelihood and is denoted Btrio. This estimate is
then compared to a traditional logistic regression esti-
mate of the genotype log odds ratio, BCC, using the
case-control sample, which is composed of case-trio
probands and the unrelated control subjects. Chen and
Lin use a Wald-type test to determine whether the effect
estimates are consistent. If this test is not rejected, a
weighted least-squares estimator for the combined
genetic effect is then constructed for inference as:

B = W1ﬁtrio + WZBCC 1)

where W, and W, are weights derived from linear
model theory assuming the parameter estimates follow a
multivariate normal distribution (see Chen and Lin [7]
for details). Here, the assumptions of a rare disease and
no population stratification are necessary for validity.
However, the test used to reject the appropriateness of
combining the RR estimates is not well powered, as evi-
denced by our simulations, which often did not confer
sufficient evidence to reject the null hypothesis of para-
meter equivalence even though the simulated disease is
not, in fact, rare—a necessary condition for such equiva-
lence. This method was designed for case-trio and unre-
lated control subjects; however, in our analyses control
offspring from the control trios are added to the case-
control subsample.

Zhu et al.’s method

In Zhu et al’s [8] approach, principal components are
calculated from the genotypes of all unrelated indivi-
duals (trio parents and unrelated case and control sub-
jects), and both the genotypes and the phenotypes of
these individuals are then separately regressed on the
principal components. The resulting linear regression
parameter estimates are used to calculate genotypic and
phenotypic residuals, ¥;; and &;j, respectively, where i
indexes families and j indexes individuals within a
family. The covariance between these residuals is mea-
sured as:
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where N is the number of families, k; is the number of
individuals in the ith family, and N7 is the total number
of individuals. Within-family correlations are taken into
account in the calculation of the variance of T to con-
struct a Wald test. Although this method requires
enough markers to estimate principal components, it has
the distinct advantage of being robust to population stra-
tification. It can incorporate more complex family struc-
tures and does not discard any of the GAW17 data for
analysis. Software to apply this approach, FamCC, is
available from Zhu et al. [8].

Zhang et al.’s method

Zhang et al.’s [9] method adapts a score test statistic pro-
posed by Lange et al. [23] that applies generalized estimat-
ing equations to family-based association tests. To obtain
estimates for the score test statistic, the components of the
test statistic are decomposed into two mutually exclusive
sets: the unrelated individuals and the trios. Traits are
treated as constants so that the population genotype mean
and variance are estimated for the unrelated individuals
and the genotype mean and variance for the offspring are
defined through Mendelian transmissions. Similar to Zhu
et al’s method, this framework allows for incorporation of
covariates, but unlike the other methods considered, it can
easily handle missing parents.

Zhang et al. [9] use principal components analysis (PCA)
to adjust for population stratification. This is done sepa-
rately for the two data subsets. The standard principal-
components-based adjustment is used for the unrelated
individuals in order to adjust the corresponding genotype
and phenotype vectors by means of linear regression on
the principal components, which results in:

U=Z(?7ij‘/7’)(§ﬁ‘§)' (3)
ij

where g and § are the adjusted population trait and
genotype means, respectively. A TDT-like PCA that

Table 1 Average empirical rejection rates
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adjusts for population stratification in family data [24] is
used within the set of related individuals to define:

.. im T &i
R=2(Yij_,u)(gij_¥) (4)
ij

where g;,,, and g;r are the mother’s and father’s geno-
types in the ith family, respectively. The score Z = U +
R is squared and standardized by its variance to provide
a score test. Zhang et al. [9] provide a Java-based pro-
gram, GAP, for analysis.

Results

For each method we tested all 24,487 SNPs from the
GAW17 data using the 697 unrelated individuals in the
case-control sample and the subsampled 194 trios (582
individuals) in each of the 200 simulation replicates,
with affected status as the phenotype. Although an
adjustment for multiple testing would be appropriate for
this study design, we chose to use a 5% nominal level of
significance throughout in order to better compare the
methods. Although these methods readily generalize to
handling other genetic models, we assumed an additive
mode of inheritance throughout.

False-positive rates

Table 1 displays the average rejection rates across all
noncausal and causal SNPs for each aggregation method.
Although error rate inflation does not appear to be a pro-
blem, it is easy to see that all methods are low powered
and that only the Zhang et al. [9] approach appears to
have a discernible increase in the rejection rates from the
null SNPs to the causal SNPs. It also appears that remov-
ing so-called spurious genes [25] from the noncausal
SNPs lowers the error rate, as expected.

SNP discovery power

Although the power averaged over causal SNPs was low,
some of the SNPs were detectable at high rates. Figure 1
displays the empirical powers for each method plotted
against the effect size and grouped into three categories
of SNP minor allele frequency. Here, effect size is not

Method Noncausal SNPs Causal SNPs
All With SNPs from spurious genes removed All
Chen and Lin 0.0388 0.0378 0.0269
Zhang et al. 0.0420 0.0408 0.0761
Zhu et al. 0.0551 0.0551 0.0556

Empirical rejection rates over the 200 replications for each method averaged over all SNPs (24,327 noncausal SNPs and 160 causal SNPs, 2 of which confer
susceptibility through two different components of the latent disease susceptibility distribution). Removing SNPs from the spurious genes [25] results in 16,380

noncausal SNPs.
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Figure 1 Empirical rejection rates for causal SNPs. Empirical rejection rate of each method to select causal SNPs. True effect size (8) is on the
horizontal axis, and the strips correspond to rare, moderate, or common SNPs. MAF, minor allele frequency.

directly for disease status but rather for an underlying
distribution of disease susceptibility [2]. It is clear that
many rare SNPs are not detectable for any of the exam-
ined methods. However, contrary to intuition, many of
the rarer SNPs provide the highest levels of power.

Table 2 Empirical rejection rates for top causal SNPs

Those SNPs with substantive power vary between small
and large effect sizes. Examining SNPs for which there
is at least modest power (Table 2) reveals that the
Zhang et al. [9] approach most often is the highest
powered.

Causal SNP Gene Effect size MAF Chen and Lin Zhang et al. Zhu et al.
C153181 ELAVL4 0.30946 0.000717 0 0.235 0
C153181 ELAVL4 0.76911 0.000717 0 0.235 0
C159189 PIK3C2B 0.19102 0.006456 0 0.395 0.380
354880 BCHE 0.20651 0.001435 0 0.005 0.275
451873 KDR 0.58301 0.000717 0.300 0.420 0
451878 KDR 0.13573 0.164993 0 0.305 0.120
(454935 VEGFC 135726 0.000717 0.045 0.805 0.690
555133 FLT4 0.15986 0.001435 0 0.275 0
€652981 VEGFA 1.20645 0.002152 0.195 0.935 0.825
C655380 VNNT 0.24437 0.170732 0 0.580 0450
(85442 LPL 049459 0.015782 0.050 0.280 0.260
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Table 2 Empirical rejection rates for top causal SNPs (Continued)

95444 VLDLR 0.86528 0.001435 0.020 0.430 0.195
C10S3050 SIRT1 0.97060 0.002152 0.025 0.215 0.040
C10S3109 SIRT1 051421 0.000717 0 0.730 0.640
C135431 FLTT 0.74136 0.017217 0 0.075 0.385
C135522 FLT1 0.61830 0.027977 0 0.550 0400
C135523 FLT1 0.64997 0.066714 0.055 0.685 0.660
C1451382 SOS2 0.28058 0.003587 0 0.230 0.015
C1751043 SREBF1 049941 0.004304 0 0.270 0.155
C1751046 SREBF1 062779 0.002869 0 0.015 0.350
C1751048 SREBF1 0.28739 0.001435 0 0 0.245
C1754578 PRKCA 0.17038 0.166428 0.010 0.355 0.520

Gene, effect size, minor allele frequency (MAF), and empirical rejection rate over the 200 replications from each method for the 21 causal SNPs conferring =20%
empirical rejection rate from at least one of the three methods. The maximum empirical rejection rate over the three methods is in boldface for each causal SNP.

There are 160 causal SNPs, 2 of which confer susceptibility through two different components of the latent disease susceptibility distribution.

Discussion and conclusions

Several methods address the problem of combining
population- and family-based genetic association data.
These methods differ fundamentally in whether they
incorporate within-family transmissions and rely on tests
for population stratification to justify effect estimate
aggregation or perform between-individual analyses
using family data. Performance related to population
stratification cannot be assessed here because no stratifi-
cation was simulated in the GAW17 data.

Although the Zhang et al. [9] method performed better
than the other two methods considered, we did see that
no method was well powered to detect causal SNPs in this
scenario. Both the Zhang et al. [9] and the Zhu et al. [8]
methods allow for more general pedigree structures than
the trios-only analysis performed here and will likely per-
form more favorably when larger pedigrees are considered.
In future work, we plan to adapt aggregation methods sui-
table for the CDRV hypothesis.
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