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Abstract

In the quest for the missing heritability of most complex diseases, rare variants have received increased attention.
Advances in large-scale sequencing have led to a shift from the common disease/common variant hypothesis to the
common disease/rare variant hypothesis or have at least reopened the debate about the relevance and importance of
rare variants for gene discoveries. The investigation of modeling and testing approaches to identify significant disease/
rare variant associations is in full motion. New methods to better deal with parameter estimation instabilities,
convergence problems, or multiple testing corrections in the presence of rare variants or effect modifiers of rare
variants are in their infancy. Using a recently developed semiparametric strategy to detect causal variants, we
investigate the performance of the model-based multifactor dimensionality reduction (MB-MDR) technique in terms of
power and family-wise error rate (FWER) control in the presence of rare variants, using population-based and family-
based data (FAM-MDR). We compare family-based results obtained from MB-MDR analyses to screening findings from a
quantitative trait Pedigree-based association test (PBAT). Population-based data were further examined using penalized
regression models. We restrict attention to all available single-nucleotide polymorphisms on chromosome 4 and
consider Q1 as the outcome of interest. The considered family-based methods identified marker C4S4935 in the VEGFC
gene with estimated power not exceeding 0.35 (FAM-MDR), when FWER was kept under control. The considered
population-based methods gave rise to highly inflated FWERs (up to 90% for PBAT screening).

Background
Analyzing the effects of genes and/or environmental fac-
tors on the development of complex diseases is a great
challenge from both the statistical and the computational
perspectives. Calle et al. [1,2] recently developed the
model-based multifactor dimensionality reduction (MB-
MDR) technique, which tackles association and interaction
analysis by assigning genotype cells to different risk cate-
gories. This method is also applicable to one-dimensional
screening. Currently, the MB-MDR approach uses permu-
tation testing to assess significance [3], thereby also cor-
recting for multiple testing. An additional major problem
arises when associations between a trait of interest and

rare variants are targeted. In this context, it is unclear
which of the family-based or population-based designs will
be more advantageous. Also, traditional regression meth-
ods break down because parametric assumptions are
hardly fulfilled for rare variants [4]. In this paper, we
explore the utility of several methods, both parametric and
nonparametric, to test for or model genetic associations
using population-based and family-based data from
Genetic Analysis Workshop 17 (GAW17).

Methods
Data set and quantitative trait association analysis
The data provided by GAW17 include a subset of genes
grouped according to pathways that had sequence data
available in the 1000 Genomes Project. Effect sizes for
coding variants within these genes were assigned using
PolyPhen and SIFT predictions of the likelihood that the
variant would be deleterious. Two hundred replicates

* Correspondence: kristel.vansteen@ulg.ac.be
† Contributed equally
1Systems and Modeling Unit, Montefiore Institute, University of Liege,
Grande Traverse 10, 4000 Liège, Belgium
Full list of author information is available at the end of the article

Mahachie John et al. BMC Proceedings 2011, 5(Suppl 9):S32
http://www.biomedcentral.com/1753-6561/5/S9/S32

© 2011 Mahachie John et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:kristel.vansteen@ulg.ac.be
http://creativecommons.org/licenses/by/2.0


were generated. Our analyses involve the quantitative
trait Q1, which was simulated as a normally distributed
phenotype. Furthermore, we restrict attention to the
available single-nucleotide polymorphisms (SNPs) on
chromosome 4 (944 in total). All simulated singular SNP
effects (SNPs C4S1861, C4S1873, C4S1874, C4S1877,
C4S1878, C4S1879, C4S1884, C4S1887, C4S1889, and
C4S1890 in the KDR gene and C4S4935 in the VEGFC
gene) are assumed to be additive on the quantitative trait
scale, such that each copy of the minor allele increases or
decreases the mean trait value by an equal amount. In
addition, values of Q1 were simulated to be higher in
smokers, and the listed variants in the KDR gene were
involved in KDR-smoking interaction effects on the trait.
There are 944 markers in 81 genes on chromosome 4.
The sample size for both population- and family-based
data is 697 with family data comprising 8 families with
202 founders and 3 offspring generations. The founders
were randomly sampled from the unrelated individuals
data set, and genotypes of offspring were sampled using
Mendelian inheritance. It should be noted that genetic
information is the same for all replicates; only phenotype
and smoking status differ.
For the family data, we compare the performance of the

MB-MDR approach (family-based, FAM-MDR) to the
association test (PBAT) screening [5-7] (version 3.61),
whereas for unrelated individuals we compare the MB-
MDR approach to penalized regression (the penalized
package in R, v. 2.9). Power is estimated on the basis of
rejection of the null hypothesis for the SNP under investi-
gation, whereas the family-wise error rate (FWER) is esti-
mated on the basis of rejection of the null hypothesis for
any of the SNPs with no effect. In addition, we reevaluated
power and FWER by collapsing rare variants in the genes
of chromosome 4.
In the following subsections, we briefly describe the

main characteristics of the approaches we consider in
this comparative study.

MB-MDR modeling
The MB-MDR technique for one dimension involves three
steps. First, each marker’s genotype cells are assigned to
one of three categories—high risk (H), low risk (L), or no
evidence (O)—on the basis of the result of association
tests (t tests) on each of the individual cells versus all
other cells with the response variable, using a liberal
p-value threshold of 0.1 [3]. If this threshold is not
attained for whatever reason, the cell is labeled O. Next,
an association test is performed with the new predictor
variable X in {H, L, O} on the outcome variable. Associa-
tion with the trait is investigated by testing H versus L [3]
using a t test. In the last step, permutation-based step-
down max T adjusted p-values [8] with 999 replicates are
computed to assess significance over all considered marker

sets, theoretically ensuring control of FWER at 5%. We
also implement the step-down min P procedure [8], based
on 999,999 replicates.
The MB-MDR approach has been adapted to accom-

modate family-based study designs and uses principles
of genome-wide rapid association using mixed model
and regression [9]. In particular, the MB-MDR approach
for families (FAM-MDR [10]) first involves performing a
polygenic analysis using the complete pedigree structure.
Then MB-MDR (for unrelated individuals) is applied to
familial correlation-free residuals obtained from the
polygenic modeling.

Family-based association testing for family-based designs
The PBAT screening approach of Van Steen et al. [7] is
adopted to identify the top 10 most powerful genotype-
phenotype combinations and to independently test these
using the family-based association test (FBAT) statistic [6].
To be more in line with our MB-MDR analyses, we report
results of the dominant genetic model rather than the
additive genetic model. Family 7 was split into nuclear
families for better handling by PBAT. Type I errors are
Bonferroni controlled.

Penalized regression for population-based designs
To select the 10 most interesting predictors for Q1, we
also apply a least absolute shrinkage and selection opera-
tor (LASSO) penalized regression [11]. We decrease the
penalizing parameter l with a precision of 0.001 to
obtain at least 10 (nonzero) markers in the model, to be
in line with PBAT screening. However, sometimes a few
more markers were selected (maximum of 12). The cov-
ariates Sex, Age, and Smoke are fixed and unpenalized in
the regression model. We repeated this analysis for each
replicate to obtain a screening technique for the main
effects. After this screening procedure, the selected mar-
kers were put in a linear regression model to test for
association with Q1, again fixing Age, Sex, and Smoke in
the model. P-values are Bonferroni corrected for the
number of markers in the data.

Gene-based collapsing method
Following Li and Leal [12] for discrete traits and Morris
and Zeggini [13] for quantitative traits, we collapsed var-
iants with a minor allele frequency (MAF) less than 0.01
within each gene into a single variable coded 0 for absence
and 1 for presence of at least one variant allele in an indi-
vidual. The reported MAFs were evaluated using all indivi-
duals separately within each considered study design.

Results
Additional file 1 presents estimated power levels for asso-
ciation of important main effects with Q1 using the
aforementioned methods. We observe that the MB-MDR
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approach for unrelated individuals has some power (0.14
for max T and 0.34 for min P) to find C4S1878, the mar-
ker with the largest MAF (0.16), but also elevated FWER
estimates (0.13 and 0.50, respectively). With penalized
regression, the highest power is achieved for markers
C4S1884 (MAF = 0.02) and C4S1877 (MAF < 0.001),
irrespective of whether a gene-collapsing method was
adopted or not. However, these results are downplayed
by the inflation of the corresponding FWER (>0.3).
PBAT exhibits extremely high power (0.94) to detect
C4S4935 (MAF < 0.001) but also has an extreme FWER
of 0.895. When a correction is made for the presence of
linkage, interestingly, PBAT’s power drops to 0 and its
FWER drops to 0.015. On the other hand, the FAM-
MDR approach has only limited power (0.18 for max T
and 0.17 for min P) to detect C4S4935 but keeps the
FWER under control.
A graphical representation of the relation between

error rates for nonfunctional markers and the corre-
sponding markers’ MAFs is given in Figure 1.
Finally, collapsing rare variants increases the estimated

power of the MB-MDR approach on unrelated individuals,
both for the common variants C4S1878 (0.375 for max T
and 0.38 for min P) and C4S1884 (0.205 for max T and
0.155 for min P) on the KDR gene and for the collapsed
variable obtained from the rare variants on the KDR gene
(0.355 for max T and 0.47 for min P). For the FAM-MDR
analysis for families, collapsing increases the power to
detect the variant C4S4935 on the VEGFC gene (0.275 for
max T and 0.345 for min P). FWER for unrelated indivi-
duals remains high, whereas for family data FWER is
under control.

Discussion
Using the considered methods, we observed that different
markers were highlighted in unrelated individuals versus
families. Given the extent of monomorphic and nearly
monomorphic causal variants with Q1 on chromosome 4,
it is not surprising that none of the adopted methods per-
form satisfactorily in identifying genetic effects in the pre-
sence of rare variants. In particular, marker C4S4935
(Additional file 1) has only one heterozygous individual in
the unrelated individuals data, and hence no method will
be powerful enough to highlight this marker. However, this
heterozygous individual was selected as a founder and pro-
pagated in one of the eight families, leading to an increased
number of copies of the variant allele and consequently
increased power to identify C4S4935 in the family data.
As a side remark, we also investigated whether the MB-

MDR approach was able to identify the gene-smoking
interaction effect present in the data. It is not surprising
that detecting it was virtually powerless. Six out of 10
SNPs showing gene-environment interaction with smok-
ing have such extremely low MAFs that no homozygous

individuals for the rare allele and only one heterozygous
individual were observed. Hence, for these SNPs, infor-
mation about their potential to change the effects of
smoking on Q1 is basically nonexistent because the one
heterozygous individual is either a smoker or a nonsmo-
ker. For unrelated individuals, none of the 944 markers
are monomorphic, whereas 403 of the markers are
monomorphic in the family data, leaving only 541 mar-
kers of interest in 77 genes. This can be explained by
existing founder effects.
The beauty of the permutation-based corrective

method for multiple testing used in the MB-MDR
approach is that it tackles the issue of testing a large
number of marker sets for evidence of gene-gene interac-
tions with the trait, by controlling FWER at 5% [3]. We
argue that the uncontrolled FWER levels might be a
direct consequence of the distributional properties of
association test statistics involving rare variants and their
effect on the validity of both the adopted testing proce-
dure and the applied multiple testing corrective methods.
For instance, max T and min P adjusted p-values are
known to be similar when the test statistics are identi-
cally distributed. When this is not the case, max T adjust-
ments may be unbalanced such that not all tests equally
contribute to the adjustment, leading to suboptimal
power. The drawback of the min P implementation is
that it is less computationally tractable than the max T
approach and that a large number of permutations are
needed to detect possible improved effects over max T
implementations. A promising alternative approach may
be the max T scaled method of Nacu et al. [14]. This
method adjusts each test statistic by subtracting its null
mean and dividing by its null standard deviation, leading
to comparable null distributions. The max T scaled
method can be considered a parametric and fast version
of the min P method and requires a comparable number
of permutations as the max T approach.
The total contribution to FWER of markers in linkage

disequilibrium with functional markers (r2 > 0.9) is only
0.01; hence linkage disequilibrium can be ruled out as an
explanation of the increased FWER. In contrast, rare
effects seem to be the major cause of the observed ele-
vated FWER estimates. This is further supported by the
observation that 1 out of 200 simulated replicates gives an
erroneous result among the markers with MAF > 0.1
(Figure 1a). Under the assumption that the markers with
MAF < 0.1 (90% of the data) and the markers with MAF >
0.1 (10% of the data) behave similarly, we expect that 1 +
9 = 10 out of 200 replicates will give rise to an erroneous
result (all markers considered). Hence the FWER would
indeed be controlled at 5%. The same reasoning can be
adopted to explain the conservativeness of the PBAT
approach in the presence of rare variants, especially when
the empirical variance option (test of no association in the
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presence of linkage) is used. In effect, the apparent liberal
results observed in Pedigree based association testing with
default screening parameters seem to be caused by a lim-
ited number of problematic markers (Figure 1b). Omitting
marker C4S4694 (with MAF = 0.08) from the analysis
indeed decreases the FWER from 0.895 to 0.445. When
we remove three additional markers with moderate MAFs
showing errors in multiple replicates, FWER tends to 0.04.
Joint application of the MB-MDR approach and gene

collapsing leads to increased power, which can be
explained by both the reduced multiple testing burden
(note the increase in power for the common variants)
and the creation of variables that exhibit larger amounts
of information. For unrelated individuals, of the 944

markers, 199 have MAF ≥ 0.01 and 745 have MAF <
0.01, and they are collapsed into 72 gene-specific vari-
ables. For the families, of the 541 nonmonomorphic mar-
kers, 227 have MAF ≥ 0.01 and 314 have MAF < 0.01,
and they are collapsed into 60 gene-specific variables.
Surprisingly, FWER increased when the MB-MDR
approach was applied to unrelated individuals. Notably,
one of the drawbacks of adopting collapsing methods is
that singular effects for rare variants cannot be distin-
guished from global gene effects.

Conclusions
We compared several genetic association strategies to
detect main effects, including the MB-MDR approach,

Figure 1 Marker-specific error rates. Marker-specific error rates as a function of minor allele frequency (MAF) for all nonfunctional markers. (a)
MB-MDR using max T on unrelated individuals and (b) PBAT with default options.
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PBAT screening, and penalized regression. Although
none of the methods exhibited sufficient power to detect
rare variants, remarkable differences were observed
between these methods within and between study
designs. At this point it is not clear whether these differ-
ences are due to the particular way the genetic effects
were simulated in the family-based or population-based
data or whether they are actually due to the methods
themselves. However, most important, we postulate that
the rarity of certain marker alleles hampers the validity
of model assumptions and distributional properties of
test statistics as well as assumptions underlying some
commonly used measures to correct for multiple testing
or to control false-positive rates.

Additional material

Additional file 1: Table 1 - Power to detect functional markers and
FWER Power and FWER results are shown for the MB-MDR approach and
penalized regression on unrelated individuals, and FAM-MDR and FBAT
results are shown for family data, both on original and collapsed
chromosome 4 data. Power values greater than 0.1 are indicated in bold,
and FWER values greater than 0.1 are indicated in italic. a At least 10
markers are selected using penalized regression, with Sex, Age, and
Smoke as the fixed covariates. bP-values are Bonferroni-corrected
according to the total number of markers. Sex, Age, and Smoke are fixed
covariates in the final model. c PBAT screening uses FBAT statistic to test
the null hypothesis of no association in the presence of linkage.
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