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Abstract

Next-generation sequencing technologies now make it possible to genotype and measure hundreds of thousands
of rare genetic variations in individuals across the genome. Characterization of high-density genetic variation
facilitates control of population genetic structure on a finer scale before large-scale genotyping in disease genetics
studies. Population structure is a well-known, prevalent, and important factor in common variant genetic studies,
but its relevance in rare variants is unclear. We perform an extensive population structure analysis using common
and rare functional variants from the Genetic Analysis Workshop 17 mini-exome sequence. The analysis based on
common functional variants required 388 principal components to account for 90% of the variation in population
structure. However, an analysis based on rare variants required 532 significant principal components to account for
similar levels of variation. Using rare variants, we detected fine-scale substructure beyond the population structure
identified using common functional variants. Our results show that the level of population structure embedded in
rare variant data is different from the level embedded in common variant data and that correcting for population

structure is only as good as the level one wishes to correct.

Background

With increasing availability of polymorphic molecular mar-
kers across genomes, examining population structure using
a large number of loci has become a common practice in
evolutionary biology and human genetics [1]. In assigning
individual membership and inferences, investigators have
found that some markers (or variants) are more informa-
tive than others [2]. In such cases, many loci are typed on
samples from these populations, and subsets of these loci
(typically those that appear most divergent between the
populations) are chosen for analysis. Selecting and using
only the most informative markers for population assign-
ment can reduce both time and genotyping costs while
retaining most of the power of the complete set of markers.
However, currently more than 15 million common and
rare single-nucleotide polymorphisms (SNPs) have been
deposited in the 1000 Genomes Project database, and users
of these data sets have several questions, including how
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many rare or common SNP loci are needed to get a good
clustering or assignment and how much of the total varia-
tion is attributed to rare and common variants. In addition,
the relationship between common and rare variants in
terms of population structure remains unknown. To
address this issue, we sought to answer the following two
questions: Does a similar population structure (or inferred
ancestry) exist in common and rare variants? From a popu-
lation stratification perspective, how strongly are rare and
common variants correlated? When both common and
rare variants are obtained from the same participants,
we are given the opportunity to investigate these questions
directly. To answer these questions, we used rare and
common SNPs from the Genetic Analysis Workshop 17
(GAW17) mini-exome sequence and ran a multivariate
statistical analysis.

Methods

For our analysis we used the data available from the 1000
Genomes Project as given in the GAW17 mini-exome
sequence [3]. Seven of the 11 populations were included:
Caucasians from the United States with northern and
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western European ancestry; Yoruba from Ibadan, Nigeria;
Japanese from Tokyo; Han Chinese from Beijing; Chinese
in metropolitan Denver, Colorado; Luhya in Webuye,
Kenya; and Tuscans in Italy.

We first divided the data set into two groups: common
functional variants and rare functional variants. Functional
variants are variants that confer detectable (nonsynon-
ymous) functional changes (both coding and regulatory) on
the locus. Rare variants have a minor allele frequency
(MAF) less than 5%, and variants with MAFs greater than
(or equal to) 5% are common. In this study, the common
functional variants consist of 1,379 SNPs and the rare func-
tional variants consist of 12,193 SNPs. Both variants were
summarized across the seven populations (697 samples).
We used principal components analysis to reduce variable
dimension, Structure analysis to assess ancestry, and discri-
minant analysis to predict population membership.

Principal components analysis

Principal components analysis synthesizes information
contained in a set of #n observed variables (M;, ..., M,,) by
seeking a new set of k (k <n) orthogonal variables (PC;,
..., PCy), named PC; these variables are calculated from
the eigen-decomposition of the covariance matrix M.
The jth principal component (PC) is a linear combination
of the observed variables:

PC; = oMy + -+ a,;M,, (1)

Where coefficients ¢;; are elements of the eigenvector
corresponding to the jth eigenvalue. PCs were extracted in
descending order from the corresponding eigenvalue that
measures the variance of the original variables explained
by each PC [4]. PCs were calculated using the R software
(www.r-project.org). Because the axis of the PCs often cor-
respond or co-segregated with geographic ancestries, we
applied Structure analysis [5] to estimate the ancestry of
each individual based on the seven populations. For each
ancestry estimate, we performed 10,000 burn-in periods
and 10,000 iterations. Separate analyses were performed
for common and rare functional variants.

Discriminant analysis

To avoid the limitation of a large number of SNPs com-
pared to the relatively small number of individuals and
the correlation occurring in allele frequencies, we ran a
discriminant analysis using the uncorrelated top signifi-
cant PCs. This analysis ensures that variables submitted
to discriminant analysis are perfectly uncorrelated and
that their number is less than that of analyzed indivi-
duals. For each data set (common and rare functional
variants), we ranked markers based on the loading from
the PCs eigenvector. From ranked markers, we selected
the top subsets of markers (20—1,000 markers per subset)
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to evaluate population membership using prediction
accuracy measures [4]. Prediction accuracy was calcu-
lated as the number of correctly classified individuals
divided by the total number of individuals in the study.

Results

Population structure using common functional variants
Principal components analysis using common functional
variants revealed clear distinction among the three human
geographic origins (Europe, Asia, and Africa) but not
among the seven different populations studied (Figure 1).
The first PC (which explains the largest portion of varia-
tion, 10.4%) distinguished between Africans and non-
Africans, with samples from Yoruba and Han Chinese
being widespread compared to the rest of the populations.
The second PC, explainingA 6.6% of the total variation,
distinguished between Europeans and non-Europeans.
The analysis based on common variants required 388 PCs
to account for 90% of the variation or population struc-
ture. Although the scree plots suggest that the first four
PCs would be optimal to adjust for population stratifica-
tion, we present the first two PCs in Figure 1 to demon-
strate differences among the seven populations.

Population structure using rare variants

Using PC1, we found that the populations were quite
close to each other and did not show any clear clustering.
Africans and non-Africans were distinguished only on
the second PC (PC2) (Figure 1). The first PC contributed
1.6% and the second PC contributed 0.84% of the total
variation among populations. The analysis based on rare
variants required 532 significant PCs to account for 90%
of the variation or population structure. The scree plots
suggest that the first nine PCs should be included to
adjust for population stratification; nonetheless, plotting
PC1 against PC2 of the rare variants showed that most of
these individuals had intermediate values between conti-
nental clusters of origin (Figure 1). Although individuals
were classified according to geographic origin using prin-
cipal components analysis, we observed substantial varia-
bility in the ancestral genetic background based on rare
variants compared with common variants (Figure 2).
Using rare variants, we identified an individual with pri-
mary European ancestry in a population sample of
Yoruba.

Population membership using discriminant analysis

To assess how many markers are needed for accurate indi-
vidual assignment to the correct population, we investi-
gated the top subsets (20—1,000 markers per subset) of
common or rare functional variants based on PC1- (or
PC2-) selected SNPs (SNPs with the highest loading).
Using common functional variants, 98% of individuals
were assigned to their correct population using 400 SNPs
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Figure 1 Scatterplot of principal component axis one (PC1) and axis two (PC2) based on (a) common functional variants and (b) rare
functional variants. CEPH, European-descended population (U.S. Caucasians).
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(Figure 3). This was in contrast to the 1,000 rare func-
tional variants needed to reach the same level of assign-
ment of individuals to their correct ancestry.

Distribution of MAF

European and Asian samples were more enriched in
common functional variants, although African samples
had more rare functional variants (Figure 4). It is also
interesting to note that, although the actual variants
contributing to population structure differed, we
observed a modest statistical correlation (r = 0.38)
between common and rare functional variants.

Discussion and conclusions

Population structure is an important factor in genetic
studies of common variants, but its relevance for rare
variants is unclear. To our knowledge, the analysis pre-
sented here is the first population genetic structure study

to explore rare versus common variants (using the same
samples). To summarize genetic variation, we applied
principal components analysis and demonstrated that the
number of PCs required to account for population struc-
ture varied by the MAF of variants. Higher numbers of
SNPs were required to account for a similar level of
population structure when we used rare variants com-
pared with common functional variants. In estimating
ancestry proportion, using Structure analysis, we identi-
fied many Denver Chinese with more than 50% Japanese
ancestry and many Tuscan individuals with more than
50% European ancestry. This result indicates the effec-
tiveness of including rare variants to detect outliers even
among geographically close populations. Also, a single
individual with high (>90%) inferred European ancestry
could be identified in the Yoruba population. However,
this individual had less inferred European ancestry when
we looked at common variants. This result further

% Genetic ancestry

descended population (U.S. Caucasians).

Figure 2 Inferred genetic ancestry with even clusters from seven populations based on common (upper panel) and rare (lower panel)
variants. Each individual is represented by a thin vertical line, which is partitioned into seven colored segments that represent the individual's
estimated ancestry coefficients in the seven clusters. Individuals (separated by solid lines) are represented by bars on the x-axis, and ancestry
proportion is given on the y-axis. The proportion of ancestry is illustrated by the amount of different color in each individual. CEPH, European-
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Figure 3 Predictive accuracy of common versus rare functional variants based on PC1 or PC2.
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indicates the effectiveness of using rare variants to detect
outliers among geographically close or distant
populations.

Evolutionarily, many rare variants have occurred in
recent human history; therefore they are expected to be
population specific and to show greater population diver-
sity than common variants [6,7]. Based on this hypoth-
esis, one might expect rare functional variants to provide
better predictive accuracy than common variants. Our
result do not support this hypothesis, and using the same
numbers of informative SNPs (such as 20), we found that
the predictive accuracy for ancestral membership was
13% for rare variants and 52% for common variants.
Thus fewer informative markers are required to assign
individuals to their ancestral origin when we use com-
mon functional variants rather than rare functional

variants. The confounding effect of high within-popula-
tion diversity on allele frequencies in rare variants might
have altered the results [8]. Thus it is critical to under-
stand the population structure in a given sample set and
to account for it before performing association analyses
with other factors.

Our population classification using common functional
variants performed similarly to studies using nonfunc-
tional variants (data not shown), such that the first PC
separated African populations and the second PC sepa-
rated European-descent populations. Furthermore, within
the African cluster there was more variability, which
reflects the greater genetic diversity in samples of African
origin [9]. Overall, the Luhya and Yoruba African samples,
the U.S. and Tuscan European samples, and the Han Chi-
nese, Denver Chinese, and Japanese Asian samples showed
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Figure 4 Scatterplot of the 697 individuals using allele frequency for the common and rare variants. CEPH, European-descended
population (U.S. Caucasians).
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within-population clustering based on PC1 and PC2.
These findings (common functional variants) appear to
agree with Malécot’s isolation-by-distance model, which
predicts that genetic similarity between populations will
decrease exponentially as the geographic distance between
them increases [10]. Examination of the isolation-by-dis-
tance model with rare functional variants showed that rare
functional variants do not fit Malécot’s model; rather, they
follow clinal trends as a result of the subtle signal of
genetic diversity. Clines in allele frequencies may be the
consequence of adaptation along an environmental gradi-
ent [11] or of genetic admixture occurring in secondary
contact zones. Africans and U.S. Caucasians began to get
close to 100% correct assignment when only 200 SNP loci
were used, whereas Han Chinese and Japanese required
400 SNP loci. This is shown by the much shorter branch
length for the Han Chinese/Japanese separation compared
with the branch length of the U.S. Caucasian/Yoruba
separation [12].

In summary, by restricting our analysis to each variant
type independently instead of using global average esti-
mates, we have reported for the first time that the optimal
number of subpopulations is variant dependent. The varia-
tion in the number of PCs needed to account for popula-
tion variation might indicate the detection of population
structure that would have been missed if only common
variants had been used. Thus correction for population
structure is only as good as the type of variants chosen
and the level of structure (finer or coarser) one wishes to
correct. For example, if one wants to discriminate less dif-
ferentiated groups, such as Denver Chinese from Han Chi-
nese, one might need to pick additional markers that are
known to exist in both populations but that vary in fre-
quency. Future studies using the entire 1000 Genomes
Project and other data sets will be needed to further
explore how much of an estimate of ancestry is good
enough to assign an individual to his or her founder popu-
lation and to account for population structure as well as to
confirm our findings.
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