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Abstract

Genome-wide association studies are based on the linkage disequilibrium pattern between common tagging
single-nucleotide polymorphisms (SNPs) (i.e., SNPs having only common alleles) and true causal variants, and
association studies with rare SNP alleles aim to detect rare causal variants. To better understand and explain the
findings from both types of studies and to provide clues to improve the power of an association study with only
common SNPs genotyped, we study the correlation between common SNPs and the presence of rare alleles
within a region in the genome and look at the capability of common SNPs in strong linkage disequilibrium with
each other to capture single rare alleles. Our results indicate that common SNPs can, to some extent, tag the
presence of rare alleles and that including SNPs in strong linkage disequilibrium with each other among the
tagging SNPs helps to detect rare alleles.

Background
In recent years, genome-wide association studies have
identified hundreds of genetic variants that may be asso-
ciated with many common diseases [1-3]. It is believed
that the associated single-nucleotide polymorphisms
(SNPs) detected from current association studies may
represent linkage disequilibrium (LD) between a com-
mon tagging SNP and true causal variants. Under the
common disease/rare variants hypothesis, which sug-
gests that many rare variants can contribute to the phe-
notypic variation [4,5], association studies to detect rare
alleles have become more and more important. In this
study, we try to answer two questions: (1) Within a
region in the genome, how well do common SNPs tag
the presence of rare alleles? (2) When selecting common
tagging SNPs for association studies to detect rare
alleles, should we exclude SNPs in strong LD with each
other (r2 > 0.95), or does it help to capture more infor-
mation on the rare alleles if we include tagging SNPs in
strong LD (r2 > 0.95) with each other? To answer the
first question, we analyzed the correlation between com-
mon SNPs and the number of rare alleles in samples of
rare SNPs (i.e., SNPs containing rare alleles) in each
region of the chromosomes. Then, for the second

question, we studied the change in correlation between
a single rare SNP and common tagging SNPs that is
achieved by including SNPs in strong LD with each
other when selecting common tagging SNPs.

Methods
Sample
We use the Genetic Analysis Workshop 17 (GAW17)
data set, which is composed of 697 individuals in this
study. The data include 24,487 SNPs, 74% (18,131) of
which are considered rare SNPs with a minor allele fre-
quency (MAF) less than 0.01 and only 12.8% of which
are common SNPs with MAF > 0.05. Because of the
unbalanced number of rare and common SNPs in the
data, in order to study the capability of the common
SNPs to tag rare variants, we incorporate into this data
set genotype data from the International HapMap Pro-
ject, release 28 (http://hapmap.ncbi.nlm.nih.gov/). The
final data set includes 627 individuals from 7 popula-
tions: European (88), Chinese (91), Chinese in Denver
(90), Japanese (92), Luhya (98), Tuscan (61), and Yoruba
(107). After removal of SNPs in perfect LD, we are left
with 13,777 rare SNPs (MAF < 0.01) and 116,944 com-
mon SNPs (MAF > 0.05).
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Correlation between common SNPs and the presence of
rare alleles
We divide the genome into nonoverlapping 1-Mb bins.
For each bin, we separate the rare SNPs from the com-
mon SNPs. The common SNP value for each individual
is the number of minor alleles. The correlation between
the set of common SNPs and the numbers of rare alleles
is calculated in each bin as follows. For ns randomly
selected rare SNPs (here we studied ns = 5) in a bin, we
quantify the number of rare alleles as the total number
of rare alleles, yi, that individual i (i = 1, 2, …,N) carries.
The correlation between the variable yi and the common
SNPs in the bin is calculated over the N individuals in
two ways. In the first way we calculate the Pearson cor-
relation r between yi and each of the common SNPs,
taking the maximum r2. In the second way we calculate
the multiple correlation R2 [6] between yi and the com-
mon SNPs, using a multiple regression model. These
two correlations are calculated for each consecutive
region across the whole genome. We repeat the random
sampling of the rare SNPs and the calculation of the
correlation nr/ns times (i.e., the closest integer to nr/ns )
if nr >ns, where nr is defined as the total number of rare
SNPs in a bin.
We calculate the correlations between the common

SNPs and the number of rare alleles in rare SNPs sepa-
rately in each of the seven subpopulations, to test
whether the tagging capability is different in different
populations. We also calculate the correlation between
common SNPs and the number of each of two types of
rare alleles (synonymous and nonsynonymous) to test
whether common SNPs have a different capability to tag
these two types of rare alleles.
To examine whether the correlations between com-

mon SNPs and rare alleles are due to statistical noise,
we perform a permutation test. We permute each of the
common SNPs within the bin across individuals and cal-
culate the correlations between the variable yi and the
permuted common SNPs. Then the observed and per-
mutation correlation distributions are compared using a
Kolmogorov-Smirnov test. We also compare the means
of the two distributions using a t test.

Capability of common SNPs in strong LD to
capture rare alleles
We hypothesize that incorporating common SNPs in
strong LD will capture significantly more variation
resulting from rare alleles than using only the common
SNPs in less strong LD with each other. We select the
common SNPs within a 1-Mb region of each rare SNP
and divide them into two sets. The first set is composed
of the common tagging SNPs with LD of r2 ≤ 0.80
between each pair; we call this set A. The second set is
composed of the common SNPs with LD of r2 ≤ 0.95

between each pair, which we call set B. So set B has two
parts: all the SNPs in set A (r2 ≤ 0.80) and those SNPs
in set (B − A) that are in higher LD with the SNPs in
set A or between themselves (0.80 <r2 ≤ 0.95). Any SNP
in perfect LD (r2 = 1) with another is excluded from the
data. Then we calculate the multiple correlations R2[6]
between each rare SNP and the set of common SNPs
(set A and set B, respectively). Because R2 always
increases when the number of independent variables in
the model increases, RB

2 is always greater than or equal
to RA

2 [6], where the subscripts A and B represent set A
and set B, respectively.
An F statistic,
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where nA and nB are the numbers of SNPs in set A
and set B, respectively, is calculated to test whether the
increase in RB

2 over RA
2 to predict the rare alleles is

significant. Because R2 increases with the number of
explanatory terms in a model, we use the adjusted
R R2 2( )adj , which adjusts for the number of explanatory
common SNPs in the multiple regression model [6], to
evaluate the multiple correlation:
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where n is nA or nB.
In order to test whether the increase in R2 is due to

the stronger LD among the SNPs in set B, which comes
from the SNPs in set (B − A), or due to the larger num-
ber of SNPs from set (B − A), we evaluate the signifi-
cance of the F statistic by comparison to a sample of
1,000 replicates of its permutation distribution, obtained
by permuting across individuals the set of SNPs in set B
but not in set A (i.e., the SNPs in set (B − A)), which
breaks any LD structure between sets A and (B − A)
but keeps the structure within the set (B − A).
For each rare SNP, we also compare its multiple

correlation Radj
2 with the common SNP set A having

LD given by r2 ≤ 0.95 and with set B having LD given
by r2 ≤ 0.99.

Results
Correlation between the number of rare alleles and
common SNPs within a region
Using all 627 samples, the correlation between the num-
ber of rare alleles in any randomly selected five rare
SNPs and a set of common SNPs within a 1-Mb region
is less than 0.1 for both correlation measures. The cor-
relation between the number of rare alleles and a set of
common SNPs within subpopulations was larger than
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that of the samples overall (Table 1; Figure 1). The
mean adjusted multiple correlation Radj

2 for European,
Chinese, Denver Chinese, Japanese, Luhya, Tuscan, and
Yoruba ranged from 0.06 to 0.24 (Table 1). Compared
with random correlations, which are given by correla-
tions between the number of rare alleles and a set of
randomly permuted common SNPs, there was no signif-
icant difference in the total sample. In the subpopula-
tions, however, the correlations between the number of
rare alleles and the set of common SNPs were

significantly different from random correlations (P <
0.001) (Table 1), but the difference was quite small.
In the total sample, the set of common SNPs has a

correlation with the number of rare synonymous alleles
Radj 572 0 0= . and with the number of rare nonsynon-
ymous alleles Radj 482 0 0= . ; the difference, although
small, is significant (P = 7.74 × 10−4). In the subpopula-
tions, the set of common SNPs also showed higher
correlations with the number of rare synonymous alleles
than with the number of rare nonsynonymous alleles,

Table 1 Mean multiple correlation Radj
2 between (1) the set of common SNPs and the number of rare alleles, (2)

permuted common SNPs and the number of rare alleles, (3) the set of common SNPs and the number of synonymous
rare alleles, and (4) the set of common SNPs and the number of nonsynonymous rare alleles

Population (1) Common
vs. rare SNPs

(2) Random
correlation

t test P Kolmogorov-
Smirnov test

P

(3) Common vs.
synonymous rare SNPs

(4) Common vs.
nonsynonymous rare

SNPs

t test P

European 0.078 −0.022 2.84 × 10−9 9.66 × 10−15 0.078 0.077 0.952

Chinese 0.067 0.003 6.80 × 10−6 1.28 × 10−5 0.090 0.041 0.024

Denver
Chinese

0.063 −0.002 2.30 × 10−6 3.052 × 10−10 0.085 0.064 0.350

Japanese 0.089 0.004 1.50 × 10−8 6.17 × 10−12 0.091 0.081 0.668

Luhya 0.238 −0.0006 <2.2 × 10−16 <2.2 × 10−16 0.241 0.233 0.678

Tuscan 0.063 −0.002 0.001 4.60 × 10−6 0.088 0.045 0.100

Yoruba 0.120 −0.007 <2.2 × 10−16 <2.2 × 10−16 0.142 0.099 0.008

All samples 0.053 0.054 0.580 0.118 0.057 0.048 7.74 × 10-4
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Figure 1 Distribution of the correlation r2 between rare alleles and common SNPs in the subpopulations and overall. The correlation is
between the common SNPs and the number of rare alleles present in five random rare SNPs within a 1-Mb region. X-axes are the correlation r2,
y-axes are the probability densities.
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and the difference was most significant in Yoruba
(P = 0.008). Note that in Yoruba, although the average
correlation between common SNPs and the number of
rare alleles is not high ( .Radj 12)2 0= , it is significantly dif-
ferent from a random correlation, which suggests that
common SNPs are able to capture some information on
the number of rare alleles. In Yoruba, the set of common
SNPs has a significantly smaller correlation with the num-
ber of rare synonymous alleles than with the number of
rare nonsynonymous alleles (P = 0.008), which may indi-
cate that the common SNPs are more prone to detecting
nonfunctional SNPs than functional SNPs in this popula-
tion. The correlation between common SNPs and the
number of rare alleles is highest in Luhya ( .Radj 24)2 0= ,
but common SNPs show no significant difference in
capturing synonymous and nonsynonymous SNPs.

Capability of common SNPs in strong LD to capture rare
variants within a region
By comparing two correlations—the adjusted multiple
correlation between a rare SNP and the set of common
SNPs in set A (LD of r2 ≤ 0.80) and the adjusted multi-
ple correlation between that rare SNP and the set of
common SNPs in set B (composed of both the SNPs in

set A with LD r2 ≤ 0.80 and the SNPs in stronger LD,
0.80 <r2 ≤ 0.95)—we found that some rare SNPs showed
higher correlations with the common SNPs in set B than
with those in set A (Figure 2). The distributions of
the two correlations are significantly different using a
Kolmogorov-Smirnov test (P = 2.44 × 10−6), although
their means are not significantly different by a t test (P =
0.07). If set A is the set of common SNPs with LD ≤ 0.95
and set B is the set of common SNPs with LD ≤ 0.99,
then set B also shows higher correlation with some rare
SNPs than set A does, and the difference of the distribu-
tions of the two Radj

2 values is significant (Kolmogorov-
Smirnov test P = 0.02). We used the F statistic to evaluate
whether the increase in R2 for set B is due to the extra
SNPs in stronger LD in set B or is just due to chance. For
the points in Figure 2 that show an increase in Radj

2

greater than 0.30, most of the increases are significant
(nominal P < 10−5 using an F test that assumes normality;
P < 0.03 by permutation), except for two points (nominal
P > 0.08, permutation P > 0.11).

Discussion
In this study, we found that within a region in the gen-
ome, overall the common SNPs are not highly correlated

Figure 2 Distribution of the multiple correlation R2 between a rare SNP and a set of common SNPs within a 1-Mb region of the rare
SNP. Each point represents a rare SNP. The x-axis is the adjusted R R2 2( )adj between the rare SNP and the common SNPs in set A, and the y-
axis is the adjusted R R2 2( )adj between the rare SNP and the common SNPs in set B. SNPs in set B have stronger LD than SNPs in set A, thus
set B contains all the SNPs in set A and the SNPs that have stronger LD with those in set A or between themselves. In the left-hand panel, SNPs
in set A have LD r2 ≤ 0.8 and SNPs in set B have LD r2 ≤ 0.95. In the right-hand panel, SNPs in set A have LD r2 ≤ 0.95 and SNPs in set B have
LD r2 ≤ 0.99.
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with the number of rare alleles, so they are not powerful
for tagging the presence of rare alleles. But in subpopula-
tions, the common SNPs can capture some information
on the presence of rare variants, and their increased cor-
relations are statistically significant but are often small
(Table 1). We also found that including tagging SNPs in
strong LD with each other is helpful in detecting rare
alleles.
Common SNPs have higher correlations with the pre-

sence of rare SNPs in the subpopulations, which indi-
cates that population structure influences the tagging
power. The common SNPs have lower correlations with
the presence of nonsynonymous SNPs, especially in the
Yoruba population, which may indicate difficulty in cap-
turing rare functional variants in that population. In
addition to the presence of rare alleles, we also analyzed
the correlation between common SNPs and another
variable, a collapsing statistic for rare SNPs [7-9], which
has the value 1 if a rare allele is present and the value 0
if no rare alleles are present among several randomly
selected SNPs within a genome region. We obtained
similar results with the collapsing variable (data not
shown).
Our study suggests that we should not exclude SNPs

in strong LD (e.g., r2 > 0.95) from tagging SNPs in an
association study, because they can help to detect rare
SNPs. They are less helpful for predicting disease risk,
however, because their attributable risk is so small; but
the significant associations detected by them could be
important for detecting new metabolic pathways.
The multiple correlation R2 could be overadjusted

because the adjusting assumes independence of the
common SNPs, which is not the case for our study. But
we nevertheless get increased Radj

2 to tag rare SNPs by
including SNPs in strong LD with each other among the
tagging SNPs, which indicates their importance in an
association study to detect causal variants.

Conclusions
In this study, we found that, overall, common SNPs are
not good at capturing the presence of rare alleles within
a region of the genome, but they can capture some
information on their presence in subpopulations. The
common SNPs are more prone to capturing nonfunc-
tional rare SNPs, especially in some populations. We
also found that including tagging SNPs in strong LD
with each other can be helpful in detecting rare variants.
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