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Abstract

Family based association studies are employed less often than case-control designs in the search for disease-
predisposing genes. The optimal statistical genetic approach for complex pedigrees is unclear when evaluating
both common and rare variants. We examined the empirical power and type I error rates of 2 common
approaches, the measured genotype approach and family-based association testing, through simulations from a set
of multigenerational pedigrees. Overall, these results suggest that much larger sample sizes will be required for
family-based studies and that power was better using MGA compared to FBAT. Taking into account computational
time and potential bias, a 2-step strategy is recommended with FBAT followed by MGA.

Background
Phenotypic variation in complex traits is conferred through
both common and rare variants. It has been suggested that
common variation plays a role at the level of the popula-
tion, whereas rare variation has stronger effects at the levels
of the clan (extended family) and the nuclear family [1]. To
date, a large number of genome-wide association studies
(GWAS) have focused on population-level variation. Since
the first GWAS was published in 2005 [2], more than 1000
have been conducted. By using predominantly case-control
designs with single-variant analyses, these studies have
identified common variants associated with common dis-
eases and related phenotypes. Alternatively, family-based
approaches using trios and nuclear families have been
increasingly utilized with GWAS and next-generation
sequencing [3-9]. In the past 10 years, studies of extended
families have been much more limited, even though indivi-
duals sharing recent ancestors share regions of the genome
other than disease-causing variants and may provide a bet-
ter proxy for the total mutation load [1]. Thus, there is a

clear need to evaluate strategies for the analysis of genetic
data from extended families.
The measured genotype approach (MGA) and family-

based association testing (FBAT) are 2 broad strategies
to examine family-based association in the context of
large extended families. MGA from a variance compo-
nents framework utilizes a mixed model in which famil-
ial relationships are accounted for using random effects
and genetic variants are incorporated as fixed effects. In
contrast, FBAT relies solely on within-family informa-
tion by constructing a score test that essentially provides
a correlation between phenotype and genotype. How-
ever, performance of these approaches in the context of
variants of varying frequency with modest to moderate
effect in extended family data is unclear.
Thus, this paper evaluates the performance of MGA and

FBAT in the context of large extended families genotyped
for both common and rare variants (minor allele fre-
quency ≥5% and <5%, respectively). To accomplish this,
we will use chromosome 3 variants from single-nucleotide
polymorphism (SNP) genotyping chips, as well as the
simulated phenotypes from the Genetic Analysis Work-
shop 18 (GAW18) data set based on the multigenerational
structure of the San Antonio Family Studies (SAFS) [10].
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Methods
We analyze 20 large pedigrees generated from SAFS that
range from 21 to 76 members in size. We used the chro-
mosome 3 data to test for association in the 200 simulation
replicates by employing both MGA [11] and FBAT [6,12]
with diastolic blood pressure (DBP) at exam 1. To assess
empirical false-positive rates, we analogously analyze Q1, a
trait simulated with no genetic link.
Details regarding the San Antonio Family Heart Study

(SAFHS) and the San Antonio Family Diabetes/Gallblad-
der Study (SAFDGS), which comprise the SAFS, have
been provided elsewhere [13,14]. Pertinent to our analyses,
GWAS data were generated from this study using a variety
of genotyping platforms and extensively cleaned, resulting
in a total of 472,049 SNPs. The 65,519 SNPs residing on
chromosome 3 were used in our analyses.

Measured genotype approach
First, we used MGA [9,15] as implemented in SOLAR
(Texas Biomedical Research Institute, San Antonio, TX)
[16]. This approach accounts for phenotypic correlation
between family members by including a polygenic com-
ponent as a random effect. Each SNP is coded additively
(ie, as a count of minor alleles) and is incorporated as a
fixed effect in the following model:

DBP = μ + β1age + β2age2 + β3BPMED + β × (SNP) + g + e (1)

where μ is a grand mean for DBP, β1,β2,β3 are the
respective covariate effects, β is the SNP effect, and g and
e are random genetic (additive polygenic) and residual
effects. We assume that g and e are normally distributed
with zero mean and variances 2�σ 2

g and Iσ 2
e , respectively,

where � is the kinship matrix, I is the identity matrix,
and σg

2, σe
2 are the variances from additive genetic (g)

and residual (e) effects. To test a SNP effect, the log like-
lihood of the model estimating an unconstrained SNP
effect is compared to the log likelihood of the model in
which the SNP effect is constrained to zero. Assuming
that trait values follow a multivariate normal distribution,
twice the difference in the log likelihoods of these 2 mod-
els is asymptotically distributed as χ2

1.

Family based association test: marginal tests
Second, we used FBAT to test for association. Here we
define the FBAT test statistic by

∑
ij

tij
(
xij − E(xij|Sij)

)

t2ijVar(xij|Sij)
∼ χ2

1 (2)

where tij is residual phenotype (DBP at exam 1) from
the jth nonfounder of the ith family after regression on
age, age squared, sex, and blood pressure medication use,
all at the first exam; xij is the additively coded genotype

(ie, minor allele count) for this subject; and Sij are the
sufficient statistics [17] for the jth nonfounder of the ith
family (eg, the sufficient statistics consist of parental gen-
otypes when analyzing mother-father-offspring trios).
FBAT analysis was performed with PBAT’s [18] hybrid
pedigree algorithm that clusters trios within extended
pedigrees to improve computation time using SNP &
Variation Suite v7.6.10 (Golden Helix, Bozeman, MT,
http://www.goldenhelix.com).

Family based association test: screening approach
In addition to examining FBAT test statistics marginally,
we also employed the Van Steen screening approach
[19], which allows for a reduction in the multiple com-
parisons burden. Briefly, the screening method imputes
nonfounder variants by conditioning on the correspond-
ing sufficient statistics and then estimates the condi-
tional power for each variant. This metric is then used
to screen, or rank, variants for testing, thereby reducing
the adjustment necessary to declare statistical signifi-
cance. Extensions of this have been proposed [20]; here,
for simplicity of exposition, we use the simple top 10
approach, as done in Herbert et al [21], of testing only
the top 10 variants based on conditional power using a
Bonferroni-corrected significance threshold of 0.05/10.

Power
Each of the 17 SNPs from the simulation model that are

causal for DBP
(∣∣∣β̂DBP

∣∣∣ > 0
)
was tested with MGA and

FBAT using a nominal 5% significance threshold. The
Bonferroni correction was calculated slightly differently
for MGA and FBAT. For MGA analyses, 62,715 SNPs
were considered (monomorphic SNPs were removed),
resulting in a 0.05/62715 significance threshold. These
same SNPs were examined using FBAT, and only the
58,519 SNPs that included at least 10 informative families
were tested, giving a Bonferroni-corrected significance
of 0.05/58519.

Type I error
To assess false-positive rates, we examined the trait Q1
simulated with no genetic influence. Linkage disequili-
brium (LD) was used to prune the chromosome 3 SNPs
and create a subsample of 1228 uncorrelated SNPs. These
SNPs were used to estimate type I error rates, using both
MGA and FBAT to maintain consistency across
approaches. The pruning approach has 2 advantages. First,
it reduces the computational burden, which was especially
problematic in MGA where computation time increases
substantially with the degree of pedigree complexity as a
result of estimation of the mixed model. Second, it results
in an error rate more in line with the number of true com-
parisons, as Bonferroni correction assumes uncorrelated
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tests. To calculate a comparable assessment of type I error
using the Van Steen screening approach, the proportion of
noncausal SNPs declared significant in each replicate was
averaged.
Of note, the multiple testing correction approach dif-

fered between the power and the type I error evaluation.
Specifically, the LD pruning step was not performed when
examining empirical power. Although it is optimal to use
the same procedure to assess error rate and power, the
varying pruning step should not bias our results.

Results
Power
Overall, there was low power to detect causal variants
(Table 1). Only 3 SNPs achieved greater than 20% power
using a nominal significance level. SNP rs11711953 in
MAP4 had a considerably large effect on DBP (heritability
2.29%) and a minor allele frequency (MAF) of 2.6%. The
other 2 SNPs with marginal power, rs4683602 and
rs16851435, are common (MAFs of 0.272 and 0.243,
respectively) but exhibited a much more modest effect
(heritability 0.003% and <10−5). After accounting for mul-
tiple testing, only rs11711953 had the power to be
detected, and then only by using MGA. When using the
Van Steen top 10 screening approach (FBAT-VS) the
MAP4 SNP was detectable, but not at the rate conferred
by MGA.

Type I error
Using the Q1 phenotype, we found that both MGA and
FBAT methods appropriately controlled for type I error
rate using a nominal significance (type I error rate 0.05 for
both). After controlling for multiple testing, no false posi-
tives were identified with any of the methods.

Discussion and conclusions
Using a cohort of extended families, we evaluated the
performance of 2 family based methods (MGA and
FBAT) to identify causal variants of varying allele fre-
quency and effect size. Overall, the approaches exhibited
low power with only 3 variants identified more than
20% of the time. Nevertheless, both approaches also
exhibited very appropriate family-wise false-positive
rates. Taken together, these results suggest that family-
based studies require large sample sizes to detect the
majority of effects.
The variant identified across all approaches (rs11711953),

had a MAF of 0.026 and a true effect size of −6.2235 (with
heritability of 2.29%). It appears that the ability to detect
this variant was driven by the very strong effect size
(more than 10× greater than any other variant). The other
2 variants identified were more common, but had relatively
small effect sizes. As other common variants had larger
effect sizes, there is clearly a complex interplay of factors
influencing power to detect effects.

Table 1 Empirical powers for DBP causal variants.

Characteristics No correction Bonferroni correction

SNP Gene MAF Effect Size Heritability MGA FBAT MGA FBAT FBAT-VS

rs304079 SUMF1 0.4828 0.0895 0.00005 0.015 0.010 0 0 0

rs373572 RAD18 0.3707 0.0002 0 0.050 0.015 0 0 0

rs1800734 MLH1 0.3190 −0.1142 0.00007 0.005 0.060 0 0 0

rs2020873 MLH1 0.0135 −0.4753 0.00005 0.035 0* 0 0* 0*

rs11711953 MAP4 0.0261 −6.2235 0.02290 1.000 0.310 0.995 0.000 0.370

rs1131356 FLNB 0.4955 0.3875 0.00085 0.180 0.090 0 0 0

rs3772985 DNASE1L3 0.1983 −0.0795 0.00003 0.015 0.015 0 0 0

rs12491947 DNASE1L3 0.0766 0.0005 0 0.020 0 0 0 0

rs9815775 DNASE1L3 0.3103 0.037 0.00001 0.015 0.060 0 0 0

rs2322142 PROK2 0.4234 −0.0678 0.00003 0.015 0.015 0 0 0

rs6438503 B4GALT4 0.1595 −0.1248 0.00004 0.020 0.025 0 0 0

rs6805930 B4GALT4 0.0496 0.1855 0.00004 0.055 0.005 0 0 0

rs4679394 MUC13 0.1897 −0.0891 0.00003 0.035 0.015 0 0 0

rs9814557 PPP2R3A 0.1293 0.0057 0 0.020 0.005 0 0 0

rs9826032 PPP2R3A 0.0135 0.0006 0 0.055 0* 0 0* 0*

rs4683602 ZBTB38 0.2716 0.0725 0.00003 0.220 0.105 0 0 0

rs16851435 ZBTB38 0.2432 −0.0041 0 0.405 0.140 0 0 0

Results from 200 Genetic Analysis Workshop (GAW) simulations for MGA, FBAT and FBAT-VS (the FBAT top 10 screening approach). SNPs conferring at least 20%
power for any method are indicated in bold. The gene, minor allele frequency (MAF; estimated from founders), effect size, and heritability are provided. Results
without multiple testing correction are listed under “No correction.” Methods with a genome-wide correction are under “Bonferroni correction.” Entries marked
with an asterisk (*) were not tested with FBAT methods because of a lack of informative families.
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Both methods suffered from overall low power. This
suggests that substantially larger data sets and methodo-
logical extensions incorporating multiple variants such as
FBAT-RV [22] will be required when testing for effects of
rare variants on complex phenotypes. However, care is
required to prevent spurious association results when
increasing sample size. Specifically, because the measured
genotype approach is susceptible to confounding as a
result of population stratification, combining data across
multiple studies may be problematic. In the current
study, there were no inflated false-positive rates using
any of the methodologies, suggesting that there were no
adverse effects of population stratification. However,
given the extreme low power of this study, care must be
taken to not overevaluate these findings. Future studies
need to explore this possibility with more genetically
diverse family samples to examine the relative merits of
family-based approaches. Notably, methods that rely on
between-family information must appropriately handle
population stratification because their validity is contin-
gent on either its absence [23] or sufficient adjustment,
as opposed to FBAT approaches that are, by design,
robust to population stratification.
One of the major challenges in these analyses was the

computational time, especially for the MGA, where gen-
ome-wide analyses are infeasible. MGA analysis took
approximately 30 seconds per SNP, while the FBAT
took one-eighth second per SNP. Ideally, without any
constraints on computation time and with sufficient evi-
dence to rule out population stratification, it is best to
perform both MGA and FBAT approaches across the
genome and focus on regions of overlap, that is, those
with most evidence for true association. However,
because both time and population substructure are
often constraints, when considering between MGA- or
FBAT-type analyses, we recommend initially employing
an FBAT screening approach with a less-stringent signif-
icance threshold because of its speed and robustness to
population stratification, and then following up regions
of interest with MGA for confirmation to identify var-
iants most likely to be causal.
In summary, analysis of the GAW18 simulated pheno-

types, DBP and Q1, allowed us to examine the perfor-
mance of family-based association methods in the
context of extended families and variants of varying fre-
quency. Overall, we found that the GAW18 data was
underpowered to detect all but one of the variants
regardless of the approach used. Approaches to ease the
burden of multiple testing are beneficial, and simula-
tions with explicit population stratification are needed
to further discern comparisons between these methods.
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