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Abstract

The revolution in next-generation sequencing has made obtaining both common and rare high-quality sequence
variants across the entire genome feasible. Because researchers are now faced with the analytical challenges of
handling a massive amount of genetic variant information from sequencing studies, numerous methods have been
developed to assess the impact of both common and rare variants on disease traits. In this report, whole genome
sequencing data from Genetic Analysis Workshop 18 was used to compare the power of several methods,
considering both family-based and population-based designs, to detect association with variants in the MAP4 gene
region and on chromosome 3 with blood pressure. To prioritize variants across the genome for testing, variants
were first functionally assessed using prediction algorithms and expression quantitative trait loci (eQTLs) data. Four
set-based tests in the family-based association tests (FBAT) framework–FBAT-v, FBAT-lmm, FBAT-m, and FBAT-l–
were used to analyze 20 pedigrees, and 2 variance component tests, sequence kernel association test (SKAT) and
genome-wide complex trait analysis (GCTA), were used with 142 unrelated individuals in the sample. Both set-
based and variance-component-based tests had high power and an adequate type I error rate. Of the various
FBATs, FBAT-l demonstrated superior performance, indicating the potential for it to be used in rare-variant analysis.
The updated FBAT package is available at: http://www.hsph.harvard.edu/fbat/.

Background
Both existing and novel methods incorporating family-
based and population-based designs were compared in
this report. All the methods we compare use a single test
for a set of multiple single-nucleotide polymorphisms
(SNPs) in a region (gene in our setting). This approach
avoids the problem of needing large samples for testing
rare variants individually.
The term family-based association tests (FBAT) refers

to a suite of family-based association testing methods
that rely on an extension of the transmission disequili-
brium test. We used 2 newly developed rare-variant asso-
ciation tests in the framework of FBAT, FBAT-v, FBAT-
lmm, and 2 previously existing multimarker FBAT tests,

FBAT-m and FBAT-l. Although the Genetic Analysis
Workshop 18 (GAW18) sample size is large, it is made
up of a small number of pedigrees with a large number of
individuals per pedigree. The FBAT approach treats all
nuclear families in a pedigree as independent, unless a
trait locus is known to be linked to the markers under
test. The Q1 variable, which was not simulated to be
directly associated with any causal gene, was very highly
heritable (60%; Table 1), and failure to adjust using an
empirical variance led to inflated type I errors for Q1.
We chose to first test the methods on MAP4, a gene

that was simulated to be associated with blood pressure
in the GAW18 data. Then, the most powerful tests that
maintained adequate type I error were used on a whole
chromosome scan of chromosome 3. Because many of
the tests we considered are unable to provide results
when using all SNPs, our analysis strategy starts with

* Correspondence: wkyip@hsph.harvard.edu
1Biostatistics Department, Harvard School of Public Health, Boston, MA 02115
USA
Full list of author information is available at the end of the article

Zhou et al. BMC Proceedings 2014, 8(Suppl 1):S33
http://www.biomedcentral.com/1753-6561/8/S1/S33

© 2014 Zhou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://www.hsph.harvard.edu/fbat/
mailto:wkyip@hsph.harvard.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


reducing the number of SNPs based on functional
assessment.

Methods
Variants were filtered based on their predicted function.
For coding variants, SnpEff (http://snpEff.sourceforge.
net) was used to predict nonsynonymous, splice, and
stop variants. Nonsynonymous variants were further clas-
sified using polyphen2 [1]. Lymphoblastoid cell line
(LCL) expression quantitative trait loci (eQTLs) from
Caucasian (CEU) International Haplotype Map Project
(HapMap) samples were used to highlight SNPs affecting
the transcription of MAP4 [2]. Polyphen scores above 0.5
were included together with splice and stop variants in
our analysis. An arbitrary cutoff of 3.4 (-log10 p value
from eQTL analysis) was used for eQTL filtering.
FBAT-v [3] and FBAT-lmm (JJ Zhou, MN Laird, per-

sonal communications, 2013) are 2 newly developed
gene-based rare-variant tests. FBAT-v is analogous to
gene-based burden tests developed for case-control stu-
dies. FBAT-lmm is a variance component test. Although
FBAT-lmm is also a transmission disequilibrium-based
test, the trait is modeled through a linear mixed model
(LMM), where a random genetic component is intro-
duced and tested. It allows genetic effects within the
region to be both protective and deleterious. P values
are determined using 1000 permutations. FBAT-m [4]
and FBAT-l [5] are part of the preexisting FBAT suite
of tests that were designed for common variants, but
can be used with multiple SNPs. FBAT-m is a multivari-
ate test with degrees of freedom equal to the number of
linearly independent SNPs. The linear combination test
(FBAT-l) used the noninformative families to estimate
the optimal weights for the linear combination of SNPs.
The sequence kernel association test (SKAT) has been

proposed as a test for association between both common
and rare genetic variants in a region using either continu-
ous or dichotomous traits [6,7] for population designs.
Under the semiparametric regression model, a local rela-
tionship (similarity), or “kernel” matrix, is estimated
using the genotypes from a testing region, for example,
identical by state (IBS) kernel and gaussian kernel for
nonlinear effects. As described by Yang et al, genome-
wide complex trait analysis (GCTA) is a toolkit designed
to estimate heritability using genome-wide association

studies (GWAS) data from unrelated individuals based
on an LMM under a polygenic assumption [8,9]. We
have adapted the GCTA approach to test only the SNPs
in a gene or region, and, as such, it is comparable to the
SKAT approach; indeed, LMM and semiparametric
regression share many theoretical connections [10].

Results
We used the complete set of 200 replicates for assessing
type I error and power, using an alpha of 0.05 to deter-
mine statistical significance. In our analyses, we focused
on 2 continuous phenotypes: systolic blood pressure
(SBP) and diastolic blood pressure (DBP). Heritability
estimates for SBP and DBP were both in the range of
20% to 30% (see Table 1). Coheritabilities for the 2 traits
(i.e., the proportion of phenotypic covariance explained
by common genetic covariance) ranged from 30% to 70%
for 3 exams (see Table 1). The analyses were adjusted by
age, sex, age*sex, and BPmeds (i.e., current use of antihy-
pertensive medications) at each exam by generating stan-
dardized residuals. We also analyzed average residuals
over 3 exams. For the Q1 phenotype, we adjusted for age
and sex only.

Functional assessment for screening
The MAP4 gene encompassed a total of 894 SNPs
(Table 2). Of the 894 variants in the MAP4 gene, we
identified a total of 28 SNPs that met the functional cri-
teria (Tables 2 and 3). Of these, 8 were true causal var-
iants. More than half (57%) of the 28 SNPs were rare
(minor allele frequency [MAF] <5%). The same set of
functional variants were used for the comparison of
both family-based and population-based designs.

Family-based analysis
Because of the large number of markers analyzed in a
region, FBAT-m did not perform well and the results are
not reported. Likewise, results from FBAT-lmm were also
omitted, as it currently cannot adjust for multiple families
within a pedigree. For the extended pedigree analysis of
the MAP4 gene region, the empirical variance estimator
[3,5,6] is needed to maintain type I error when phenotypes
of relatives are highly correlated. Both FBAT-v -e (empiri-
cal variance estimator) and FBAT-l highlighted the asso-
ciation of the MAP4 gene across all simulation replicates
(Table 4). The highest power and the strongest association
signal was identified using FBAT-l.

Table 1 Heritability and coheritability

Exam 1 Exam 2 Exam 3

SBP 28.6% 22.2% 31.1%

DBP 29.4% 30.4% 35.9%

SBP_DBP 52.9% 32.0% 73.6%

Q1 62.8% - -

DBP, diastolic blood pressure; SBP, systolic blood pressure.

Table 2 Summary statistics of MAP4 gene

# of SNPs Total MAF <1% MAF <5%

No filtering 894 613 (68.6%) 742 (83.0%)

After filtering 28 9 (32.1%) 16 (57.1%)
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Population-based analysis
Using 142 unrelated individuals, type I error and power
between SKAT and GCTA were compared for associa-
tion with MAP4 (Table 5). Both SKAT-o and SKAT
default parameter settings were used. In our analysis,
SKAT using the default weighting schemes (weighted by
beta[0,25]) has the highest power, which we reported
here. Both methods maintain correct type I error. SKAT
had slightly higher power in this study, although GCTA
had power greater than 85% for all phenotypes tested.

Chromosome 3 scan
A whole genome scan was performed using FBAT-l for
both family and population-based methods after adjusting
for first 10 principal components generated by EIGEN-
STRAT [11]. Only chromosome 3 was scanned for this
manuscript, which is suggested by the GAW18 data
description. Genes were defined by transcription start and
end positions obtained from the University of California
Santa Cruz (UCSC) Genome Browser hg19 build (http://
genome.ucsc.edu/). In total, 1443 genes were analyzed for
their association with average residual of blood pressure
over three time points (Figure 1). The same filtering algo-
rithm used in the analysis of candidate gene MAP4 was
adopted. Using FBAT-l and SKAT, we identified the MAP4
gene as passing the genome-wide significance level. SKAT
also identified gene DTX3L, which is adjacent to the causal
gene ABTB1. Although no genes pass genome-wide signifi-
cant level using GCTA, genes that are the most significant
(MAP4 and DTX3L) overlap with the results from SKAT.

Discussion
Both family-based and population-based analyses of
whole genome sequencing data were evaluated for their
power to detect associations with a simulated phenotype
with variants in the MAP4 gene and on chromosome 3.
This approach incorporated the use of functional predic-
tion information to filter variants as would traditionally
be done in most applied studies. Both SKAT and GCTA
had high power and an adequate type I error rate. Of
the various FBAT tests, FBAT-l demonstrated superior
performance, indicating the potential to be used in rare-
variant analysis. The lack of population substructure
and availability of potential phenotypes contribute to the
high performance of FBAT-l. Absent these conditions,
the performance degrades. The relatively poor perfor-
mance of FBAT-lmm could be a result of small sample
size and concordant direction of effect size across SNPs.
However, FBAT-lmm shows promise for the case where
effect sizes within a test region vary in signs of risk. It
does not currently have the capability to analyze
extended pedigrees.
We also note that when analyzing extended pedigree

data and highly correlated traits between relatives, the

Table 3 Names and MAF of 28 SNPs that remain for all analyses

SNP MAF SNP MAF SNP MAF SNP MAF

3-47894286 0.0085 3-47951670 0.0043 3-47956424 0.3590 3-48138082 0.3162

3-47913455 0.0085 3-47952843 0.0214 3-47957741 0 3-48140634 0.3205

3-47933630 0.0128 3-47953352 0.0043 3-47957996 0.0214 3-48413179 0.4017

3-47933903 0.0128 3-47953405 0.3718 3-47958037 0.3120 3-48508585 0.2521

3-47950674 0.0043 3-47953733 0.3162 3-48040283 0.0256 3-48519821 0.2564

3-47950908 0 3-47953813 0.0043 3-48040284 0.0214 3-48520289 0.2222

3-47951458 0 3-47953876 0.0043 3-48123540 0.3162 3-48531227 0.1795

Table 4 Type I error and power comparison based on
family studies (n = 849).

FBAT -v -e

Exam 1 Exam 2 Exam 3 Average

SBP 0.595 0.520 0.420 0.615

DBP 0.495 0.395 0.885 0.520

Q1* 0.065

FBAT -l

Exam 1 Exam 2 Exam 3 Average

SBP 0.990 0.960 0.910 1

DBP 0.980 0.930 0.885 0.995

Q1* 0.03

The current beta version of FBAT package does not allow -v - e. The results
shown in Table 4 (-v -e) were analyzed by an R script that excludes families
with parental missing genotypes.

*Q1 is the phenotype simulated for evaluating type I error.

Table 5 Type I error and power comparison based on
population study (n = 142)

SKAT

Exam 1 Exam 2 Exam 3 Average

SBP 0.985 0.98 0.975 0.98

DBP 0.92 0.845 0.8 0.97

Q1* 0.06 - - -

GCTA

Exam 1 Exam 2 Exam 3 Average

SBP 0.85 0.645 0.545 0.895

DBP 0.69 0.52 0.42 0.825

Q1* 0.055 - - -

*Q1 is the phenotype simulated for evaluating type I error.
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empirical variance estimator (-e) should be used to
achieve the correct type I error. However, its use
decreases the effective sample size so that it is closer to
the number of independent pedigrees. Finally, our analy-
sis demonstrates that using the average phenotype over
3 time points gives higher power compared to single-
time-point phenotype analysis. This suggests the combi-
nation of the phenotypes from different time points, or
even the combination of SBP and DBP, may achieve
higher power.

Conclusions
In this paper, we compared various FBAT region based
tests and compared family based tests with population
based tests. Our results show that FBAT -l outper-
formed FBAT -v0 when testing MAP4 and this could be
due to some causal variants of MAP4 within the variants
for analysis being common. Our population-based tests
comparison suggests that in the absence of population
substructure, the population-based association tests are
more powerful.

Figure 1 Genome scan using methods FBAT-l, SKAT, and GCTA. Average residual of blood pressure over 3 time points was used for association
analysis. Vertical line represents causal gene; genes that passed Bonferroni correction threshold are marked by red, the others are in blue.

Zhou et al. BMC Proceedings 2014, 8(Suppl 1):S33
http://www.biomedcentral.com/1753-6561/8/S1/S33

Page 4 of 5



Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JJZ developed FBAT-lmm, ran analyses, and wrote the paper. WKY
codeveloped FBAT-v and FBAT-v -e, and assisted in computing. MHC
developed the functional screening algorithm for SNP reduction. DQ assisted
in data cleaning and formatting, and running of principal components.
MLNM edited and revised the manuscript; NML performed the overall
design and edited the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
The GAW18 whole genome sequence data were provided by the T2D-
GENES Consortium, which is supported by NIH grants U01 DK085524, U01
DK085584, U01 DK085501, U01 DK085526, and U01 DK085545. The other
genetic and phenotypic data for GAW18 were provided by the San Antonio
Family Heart Study and San Antonio Family Diabetes/Gallbladder Study,
which are supported by NIH grants P01 HL045222, R01 DK047482, and R01
DK053889. The Genetic Analysis Workshop is supported by NIH grant R01
GM031575.
This article has been published as part of BMC Proceedings Volume 8
Supplement 1, 2014: Genetic Analysis Workshop 18. The full contents of the
supplement are available online at http://www.biomedcentral.com/bmcproc/
supplements/8/S1. Publication charges for this supplement were funded by
the Texas Biomedical Research Institute.

Authors’ details
1Biostatistics Department, Harvard School of Public Health, Boston, MA 02115
USA. 2Channing Division of Network Medicine, Brigham and Women’s
Hospital and Harvard Medical School, Boston, MA 02115, USA. 3Division of
Pulmonary and Critical Care Medicine, Department of Medicine, Brigham
and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA.
4Division of Epidemiology and Biostatistics, College of Public Health,
University of Arizona, Tucson, AZ 85724, USA.

Published: 17 June 2014

References
1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,

Kondrashov AS, Sunyaev SR: A method and server for predicting
damaging missense mutations. Nat Methods 2010, 7:248-249.

2. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C,
Nisbett J, Guigo R, Dermitzakis ET: Transcriptome genetics using second
generation sequencing in a Caucasian population. Nature 2010,
464:773-777.

3. De G, Wip W-K, Ionita-Laza I, Laird N: Rare variant analysis for family-
based design. PLoS One 2013, 8:e48495.

4. Rakovski CS, Xu X, Lazarus R, Blacker D, Laird NM: A new multimarker test
for family-based association studies. Genet Epidemiol 2007, 31:9-17.

5. Xu X, Rakovski C, Laird N: An efficient family-based association test using
multiple markers. Genet Epidemiol 2006, 30:620-626.

6. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA,
Christiani DC, Wurfel MM, Lin X: Optimal unified approach for rare-variant
association testing with application to small-sample case-control whole-
exome sequencing studies. In Am J Hum Genet. Volume 91. NHLBI GO
Exome Sequencing Project–ESP Lung Project Team; 2012:224-237.

7. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X: Rare-variant association
testing for sequencing data with the sequence kernel association test.
Am J Hum Genet 2011, 89:82-93.

8. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR,
Madden PA, Heath AC, Martin NG, Montgomery GW, et al: Common SNPs
explain a large proportion of the heritability for human height. Nat
Genet 2010, 42:565-569.

9. Yang J, Lee SH, Goddard ME, Visscher PM: GCTA: a tool for genome-wide
complex trait analysis. Am J Hum Genet 2011, 88:76-82.

10. Liu D, Lin X, Ghosh D: Semiparametric regression of multidimensional
genetic pathway data: least-squares kernel machines and linear mixed
models. Biometrics 2007, 63:1079-1088.

11. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D:
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet 2006, 38:904-909.

doi:10.1186/1753-6561-8-S1-S33
Cite this article as: Zhou et al.: A comparative analysis of family-based
and population-based association tests using whole genome sequence
data. BMC Proceedings 2014 8(Suppl 1):S33.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Zhou et al. BMC Proceedings 2014, 8(Suppl 1):S33
http://www.biomedcentral.com/1753-6561/8/S1/S33

Page 5 of 5

http://www.biomedcentral.com/bmcproc/supplements/8/S1
http://www.biomedcentral.com/bmcproc/supplements/8/S1
http://www.ncbi.nlm.nih.gov/pubmed/20354512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20354512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20220756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20220756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23341868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23341868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17086514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17086514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16868964?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16868964?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22863193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22863193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22863193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21737059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21737059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21167468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21167468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18078480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18078480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18078480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862161?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Functional assessment for screening
	Family-based analysis
	Population-based analysis
	Chromosome 3 scan

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors’ details
	References

