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Abstract

Genetic variants that predispose adults and the elderly to high blood pressure are largely unknown. We used a
bivariate linear mixed model approach to jointly test the associations of common single-nucleotide polymorphisms
with systolic and diastolic blood pressure using data from a genome-wide association study consisting of genetic
variants from chromosomes 3 and 9 and longitudinal measured phenotypes and environment variables from
unrelated individuals of Mexican American ethnicity provided by the Genetic Analysis Workshop 18. Despite the
small sample size of a maximum of 131 unrelated subjects, a few single-nucleotide polymorphisms appeared
significant at the genome-wide level. Simulated data, which was also provided by Genetic Analysis Workshop 18
organizers, showed higher power of the bivariate approach over univariate analysis to detect the association of a
selected single-nucleotide polymorphism with modest effect. This suggests that the bivariate approach to
longitudinal data of jointly measured and correlated phenotypes can be a useful strategy to identify candidate
single-nucleotide polymorphisms that deserve further investigation.

Background
High blood pressure is a common disorder in adults and
the elderly and is associated with increased risk of cardi-
ovascular diseases and many other morbidities [1]. It is a
complex trait that can be influenced by certain genetic
makeups, environmental factors, or their interactions.
There have been some genetic association studies to
identify the effect of genetic component on blood pres-
sure in certain ethnic population. The San Antonio
Family Studies (SAFS) is a family-based longitudinal
study designed to identify genes associated with high
blood pressure in Mexican American population. For
Genetic Analysis Workshop 18 (GAW18), the data from
SAFS was provided for odd-numbered chromosomes.
In multivariate longitudinal data, multiple response

variables are jointly measured over time from the same
individuals. Other environmental variables can also
change over time and could have been recorded. To

understand the relationship between independent and
multivariate dependent response variables, we need to
take into account the correlation between multivariate
responses measured over time. In GAW18 data, the phe-
notypic data, namely systolic blood pressure (SBP) and
diastolic blood pressure (DBP), as well as some environ-
mental data, were measured over time and these pheno-
typic data from the same individuals are likely to be
correlated as they might be regulated by the same genes
or common environments. Therefore, we used a bivariate
linear mixed-effect model approach to test the associa-
tion of genetic variants with bivariate phenotypic values
adjusting for environmental factors.

Methods
Participants, genotyping data, and quality control
Details about sample recruitment can be found in Hunt
et al [2]. For GAW18, data from 959 participants of
Mexican American ethnicity from 20 large pedigrees,
who were followed up for up to 4 times from 1991 to
2011, were provided. However, for our analysis we
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considered only 157 unrelated members from this
cohort, of whom only 142 individuals had both genoty-
pic and phenotypic data.
We analyzed genome-wide association studies

(GWAS) data from chromosomes 3 and 9. There were
65,519 single-nucleotide polymorphisms (SNPs) on
chromosome 3 and 42,177 SNPs on chromosome 9. We
restricted our analysis to common SNPs (minor allele
frequency ≥0.05) with genotyping call rates ≥0.95 and
Hardy-Weinberg equilibrium p value ≥10−3 and subjects
with genotyping call rates ≥0.95. We applied these cri-
teria to those 142 individuals using PLINK.

Statistical method
We applied a bivariate linear mixed model framework
(more details can be found in Refs. [3,4]) in order to
test for association between individual common genetic
variant with SBP and DBP jointly. For trait k(k = 1,2),
suppose Yk

i is a (ni × 1) vector of the trait values for ni
times of measurements for the subject i(i = 1, 2, . . . ,N);
then, the univariate mixed-effect model with p indepen-
dent variables with q

(
q ≤ p

)
of them having random

effects, can be expressed as [3,4]

Yk
i = Xk

i β
k + Zk

i γ
k
i +Wk

i + εki (1)

where Xk
i is a

(
ni × p

)
design matrix that results in the

systematic variation in the kth trait with βk as the corre-

sponding (p × 1) vector of fixed-effect; Zk
i is a (ni × q)

design matrix, usually a subset of Xk
i (q ≤ p) that charac-

terize the random variation in the trait with γ k
i ∼ N(0,Gk)

as the corresponding
(
q × 1

)
vector of random effect;

Wk
i ∼ N(0,Rk

i ) is a (ni × 1) vector of the stochastic pro-
cesses (within subject errors over repeated times) with
realization wk

i (t) at time t with variance Rk
i (t) = σ 2

wk and

covariance Rk
i (s, t) = cov(wk

i (s) ,wk
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k(t−s) at

times s and t, 0 ≤ s < t; and εki ∼ N(0, σ 2
εk
Ini) is a (ni × 1)

vector of random errors, where Ini is an identity matrix. If
the 2 traits Y1

i and Y2
i are correlated, then bivariate linear

mixed model can be formulated as
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That is, Yi = Xiβ + Ziγi +Wi + εi, where,
γi ∼ N (0,G) ;Wi ∼ N (0,Ri) ; εi ∼ N (0,� i) ;

G =
(

G1 G12

G12 G2

)
;� i = � ⊗ Ini ;� =

(
σ 2

ε1 0
0 σ 2

ε2

)
. Here, ⊗

is the Kronecker product. The Wi is the bivariate sto-
chastic processes that not only captures the correlation
of measurements within the same subject at multiple
times, but also the correlation between 2 traits at the
same time for the subject, and has the variance matrix

Ri(s, t) = CeB(t−s) at time t and covariance matrix Ri(s, t) = CeB(t−s)

at times t and s, 0 ≤ s < t. Two traits are independent
if σw1w2 = 0. Here, B is a 2 × 2 real matrix chosen such
that the eigenvalues of B have negative real parts and
matrices C and − − (CB + B′C) are positive semidefinite
symmetric [3]. We have E (Yi) = Xiβ and
var(Yi) = ZiGiZ

′
i + Ri + �i under independence assump-

tion of γi,Wi and εi; thus Yi ∼ N
(
Xiβ ,ZiGiZ

′
i + Ri + � i

)
.

Solution for β = (β1,β2)′ can be obtain by maximum like-
lihood or restricted maximum likelihood (REML)
approach using multivariate normal likelihood of Yi.

Data analysis
After the quality control filtering, we had only 133 partici-
pants available for bivariate analysis, who had genotype
data and at least 1 measurement of phenotypic data.
There were 52,862 SNPs from chromosome 3 and 34,475
SNPs from chromosome 9 that passed the filtering criteria.
For the bivariate linear mixed-effect model fitting for

each SNP, genotype (0, 1, or 2 for the number of copies of
minor allele) of a SNP was the independent variable of
interest. Besides, we a priori selected to include 3 covari-
ates, namely, measurement time in years at an examina-
tion since enrollment (which is 0 for the first year of
enrollment), baseline age (at enrollment), and repeatedly
measured antihypertensive medication use in the model.
We also included sex and repeatedly measured smoking
status in the model because keeping them, each separately
or together, resulted in a better fit (smaller Akaike infor-
mation criteria [AIC]) of the bivariate model for the 20
SNPs from chromosome 9 selected for model fit assess-
ment (modeling techniques description given in a succes-
sive paragraph). We considered autoregressive order-1
(AR(1)) assumption used for repeated measured analysis
and unstructured (UN) variance components used for the
random-effect analysis to identify the appropriate covar-
iance (or correlation) structure for between and within the
2 phenotypic measurements over time [4,5]. The AR(1)
assumption did not lead to the noticeably improved model
fit but did involve some unrealistic assumptions in bivari-
ate modeling, such as measurement at equal interval of
time for both phenotype at a time and for a phenotype
over time. Therefore, we assumed unstructured variance
components assumption that allows correlations between
any 2 measurements for the same phenotype and between
2 phenotypes at a time to vary across subjects.
There were missing follow-up data on blood pressure

and other repeatedly measured covariates, where data
from 97 subjects were missing in the fourth enrollment
period. The available data for the fourth period were not
used because discarding them resulted in much better fit
for each of those 20 SNPs. Next, 2 subjects had missing
data on medication use and smoking in all 3 examinations.
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Thus, the effective sample size was 131 for real data analy-
sis. No attempt was made to use imputation.
A binary variable “BPTYPE” (blood pressure type) was

defined as BPTYPE = 1 for SBP and = 0 for DBP for a sub-
ject at a measurement time. Finally, equation (2) was fitted
for each SNP, where the repeatedly measured bivariate
blood pressure (a maximum of six possible measurements
for two phenotypes at three examinations for a subject)
was regressed against genotype and the covariates specified
above (each regressor was multiplied by BPTYPE in order
to perform bivariate analysis) using MIXED procedure in
SAS (see Refs. [4,5] for details of modeling technique and
SAS codes). In the analysis using REML, we considered
BPTYPE having group effect, patients’ ID having subject
effects, and measurement time having random effect; that
is, time effects on blood pressure varies across individuals.
For the genotype effects βG = (β1 = βSBP

G ,β2 = βDBP
G )′

on SBP and DBP, we estimated β̂G = (β̂1, β̂2)′ and the

corresponding covariance matrix S =
(

s21 s12
s12 s22

)
, s1 and s2

being standard errors of β̂1 and β̂2, respectively, and s12
their covariance, per 1 copy increase in minor allele of
each SNP, using the bivariate approach. For each SNP,
we tested the null hypothesis H0 : β = 0 vs. alternative
H1 : β �= 0 (ie H1 : at least1, βk �= 0; k = 1, 2; that is, the
genotype was associated with at least 1 phenotype)
using F-test with (ϑ1 = 2,ϑ2 = 360), degrees of freedom
[6], assuming multivariate normality of β̂G. We also
tested the hypothesis with χ2

2 test statistic assuming
large sample approximation [6]. Because the data arose
from GWAS, we used a genome-wide significance
threshold, a = 7.2 × 10−8 [7], to adjust for multiple test-
ing problems, which enables us to see if any SNPs from
chromosome 3 or 9 achieve this threshold in bivariate
analysis.

Simulation
We assessed the statistical power of the bivariate linear
mixed effect model using 200 simulated longitudinal
data sets provided by GAW18 organizers. However, we
considered the data from only 142 unrelated subjects
who had genotypic data and phenotype and covariate
information from all 3 examinations. We chose to assess
power to detect the association of a common SNP,
rs6442089 (from MAP4 gene). The SNP had the effect
sizes, b1 = −1.4951 (variation explained = 0.0117%) and
b2 = −2.3810 (variation explained = 0.0143%) in simu-
lated SBP and DBP, respectively, per copy increase in
minor allele. We used data from 141 subjects as geno-
type data was missing for the SNP in 1 subject. We
employed the same regression analysis model and mod-
eling technique, and assessed the same hypothesis using
F (ϑ1 = 2,ϑ2 = 552) and χ2

2 test statistics as in real data

analysis above. Power of univariate linear mixed model
analysis to detect the effect of the same SNP separately
on SBP and DBP . (H0 : βk = 0 vsH1 : βk �= 0, k = 1, 2)
was also assessed using the same regression model
and assumption as in bivariate case using F
(ϑ1 = 1,ϑ2 = 137) and χ2

1 test statistics. We assessed the
power at α = 0.05 as there was no issue of multiple test-
ing; however, we also used a = 7.2 × 10−8 to be consis-
tent with real data analysis.

Results
Real data analysis
In our sample data, the mean age (standard deviation) at
enrollment was 53.7 (16.0) years, where subjects were
20.3 to 94.2 years old when enrolled. In a graphical
inspection, the SBP and DBP data at each and all 3
examinations looked approximately normal.
Table 1 displays the results of the bivariate linear

mixed model analysis using F-test for the first 15 most
significant SNPs in each of chromosomes 3 and 9. The
Manhattan plot and quantile-quantile (Q-Q) plot of the
joint association p values for all SNPs are shown in
Figures 1 and 2, respectively. The joint association
p values using χ2

2 test statistic were in general slightly
smaller but very similar to that from F statistic (the dif-
ference was very small for the most significant SNPs, for
instance, p value by for rs9632874 was smaller by
1.98E-10 [results not shown]). Three SNPs, rs12634258,
rs7647249, rs4533619 from intergenic region on
chromosome 3, and 4 SNPs rs9632874, rs12335766,
rs10122040 from gene TTC39B and rs7864652 from
gene BNC2 on chromosome 9, appeared to be signi-
ficant at genome-wide level.

Simulation results
The bivariate linear mixed model analysis had 76.5%
power to detect the effect of rs6442089 jointly on SBP
and DBP; whereas the separate univariate linear mixed
model analyses had only 30.5% and 45.0% power to
detect of effects of the same SNP on SBP and DBP,
respectively at a = 0.05, using 141 unrelated subjects. At
a = 7.2 × 10−8 the association of SNP was detected in
5 (2.5%) of simulated data sets in the bivariate analysis,
but the corresponding univariate analysis did not detect
the association with either of the phenotype in any
simulated data set. The univariate analysis produced the
smallest p value of 1.6 × 10−5 for SBP and that for DBP
was slightly bigger (Table 2), whereas the bivariate ana-
lysis resulted in smaller p values in 14.5% of the simu-
lated data sets.

Discussion
In bivariate linear mixed model analysis, we observed asso-
ciations of a few SNPs from intergenic regions and
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TTC39B gene with high blood pressure despite the small
sample size. The bivariate mixed model framework to the
GAW18 simulated data suggested that the bivariate analy-
sis is more powerful than univariate approach to analyze
longitudinal data when phenotypes are correlated. An ear-
lier simulation study [8] also found that bivariate approach
is in general more powerful than the univariate analysis
when quantitative traits are correlated. High blood pres-
sure is believed to be influenced by hundreds of genes
with generally very small to modest effects. So we need
statistical method with improved power to detect such
associations and bivariate method to longitudinal data can
be a useful strategy to identify the list of SNPs that can be

followed up for replication or validation of their associa-
tions with the phenotypes of interest.
However, we wish to underscore the limitation that

our simulation study was not extensive; we just com-
pared the power of the bivariate approach with that of
the univariate approach for only 1 SNP. We did not
assess the type I error rate of the bivariate method,
which could be inflated, especially for a small data set.
In fact, the Q-Q plot (see Figure 2) of the joint associa-
tion p values (see Figure 2) strongly suggests such infla-
tion of the error rate, although the deviation from null
distribution could also be an indication of the presence
of population substructure or admixture. Also, one

Table 1 Top 15 most significant SNPs in the bivariate linear mixed model analysis.

Chromosome 3 Chromosome 9

SNP MiA MAF GENE BP P SNP MiA MAF GENE BP P

rs12634258 T 0.38 61291738 1.54E-09 rs9632874 C 0.08 TTC39B 15270875 2.40E-11

rs7647249 C 0.20 133245961 2.70E-08 rs7864652 T 0.07 BNC2 16456759 1.39E-09

rs4533619 C 0.26 42289812 5.10E-08 rs12335766 G 0.08 TTC39B 15277123 8.54E-09

rs748191 G 0.19 5888909 3.78E-07 rs10122040 T 0.12 TTC39B 15279214 1.28E-08

rs1821942 G 0.41 FHIT 61116009 8.30E-07 rs4879586 C 0.36 ACO1 32427874 4.78E-07

rs9311317 G 0.30 42295806 1.49E-06 rs7034380 G 0.44 FREM1 14908056 7.73E-07

rs4681514 G 0.05 TM4SF4 149211660 2.84E-06 rs10858108 G 0.22 138337411 9.26E-07

rs12714954 A 0.24 LOC339862 18303505 2.87E-06 rs10858106 G 0.22 138332424 1.06E-06

rs17634797 A 0.05 FHIT 61014061 3.16E-06 rs10122098 A 0.11 12918226 1.10E-06

rs13071249 A 0.06 LOC339862 18174701 3.23E-06 rs7022225 G 0.32 PALM2 112536455 2.06E-06

rs9850400 C 0.44 FHIT 61101006 3.68E-06 rs7038509 T 0.32 PALM2 112536525 2.06E-06

rs1439008 T 0.48 FHIT 61066987 4.12E-06 rs10961479 T 0.06 NFIB 14332760 2.32E-06

rs10936111 A 0.38 157586847 5.60E-06 rs9299075 A 0.26 PTPRD 8798347 4.19E-06

rs1439004 A 0.41 FHIT 61103897 6.09E-06 rs10817738 T 0.20 DEC1 118029729 4.37E-06

rs6806415 C 0.41 FHIT 61103609 6.09E-06 rs2809247 A 0.28 AK8 135654476 4.48E-06

BP, Base pair position; MAF, minor allele frequency; MiA, minor allele; P, joint association p value; SNP, single-nucleotide polymorphism.

Figure 1 Manhattan plot of joint association p values for variants on chromosomes 3 and 9.
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needs to be cautious in interpreting our results from the
real data analysis as we have a number of limitations in
this study, including small sample size, missing observa-
tions, uncertainty about the underlying genetic model,
selection of an appropriate correlation structure, random
effect assumptions, and choice of test statistic. For
instance, although we chose a covariance (correlation)
structure between AR(1) and UN, AR(1) had a similar or
somewhat smaller AIC. However, it assumes that mea-
surements were made at an equal interval over time for
each and all phenotypes [4,5]. But this was an unrealistic
assumption in our data because the time interval between
the first and second examination ranged from 1.4 to 7.6
years. Next, it also assumes the same correlation between
measurements of 2 phenotypes at a time and between any
2 measurements of all the phenotypes for all subjects,
which might not be true. Although it involves estimating
more parameters, a UN assumption is more flexible, con-
sequently, we employed it our bivariate analysis. A detail
investigation of the properties of bivariate method in

many realistic scenarios via extensive simulation is war-
ranted before we draw a general conclusion about the use-
fulness of the bivariate method for the correlated
repeatedly measured phenotypes.

Conclusion
A bivariate approach to test associations of genetic
variants with multiple phenotypes jointly measured over
time from the same individuals could be a useful
strategy to identify genetic variants that deserve further
investigation as it can exploit the correlation structure
between phenotypes at a time and the same phenotype
over time.
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Table 2 Top 3 p values and corresponding simulation data sets from bivariate and separate univariate mixed model
analyses, and p values from other methods in the same simulation data sets.

Analysis type p Value rank Simulation data set # p Value

Bivariate SBP DBP

Bivariate model for both SBP and DBP 1 57 2.2E-10 0.000016159 0.0702504382

2 1 8.2E-09 0.0206245995 0.0008121652

3 142 9.5E-09 0.0009235493 0.0003764385

Univariate model for SBP only 1 57 2.2E-10 0.000016159 0.0702504382

2 105 3.5E-07 0.0001905345 0.0357532908

3 56 7.5E-08 0.0002211798 0.1136335665

Univariate model for DBP only 1 35 2.0E-06 0.0122982922 0.0001930709

2 41 1.4E-07 0.0064351761 0.0002340975

3 142 9.5E-09 0.0009235493 0.0003764385
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