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Abstract

Sequencing technologies have enabled the investigation of whole genomes of many individuals in parallel. Studies
have shown that the joint consideration of multiple rare variants may explain a relevant proportion of the genetic
basis for disease so that grouping of rare variants, termed collapsing, can enrich the association signal.
Following this assumption, we investigate the type I error and the power of two proposed collapsing methods
(combined multivariate and collapsing method and the functional principal component analysis [FPCA]-based
statistic) using the case-control data provided for the Genetic Analysis Workshop 18 with knowledge of the true
model. Variants with a minor allele frequency (MAF) of 0.05 or less were collapsed per gene for combined
multivariate and collapsing. Neither of the methods detected any of the truly associated genes reliably. Although
combined multivariate and collapsing identified one gene with a power of 0.66, it had an unacceptably high false-
positive rate of 75%. In contrast, FPCA covered the type I error level well but at the cost of low power. A strict
filtering of variants by small MAF might lead to a better performance of the collapsing methods. Furthermore, the
inclusion of information on functionality of the variants could be helpful.

Background
In recent years, several technologies have been released
that allow the sequencing of whole genomes of large
groups of individuals. Millions of rare mutations in the
genome can be identified, and both common and rare
variants can be analyzed jointly. This technology also
enables analyses following the common disease-rare
variant (CD-RV) hypothesis, which states that disease
etiology is caused by multiple rare variants with moderate
to high penetrances [1]. Studies have shown that the joint
consideration of multiple rare variants may partly explain
the genetic basis of disease [2]. To this end, grouping of
rare variants in a region of interest (ROI), such as a gene,
could enrich the association signal. Several approaches,
termed collapsing methods or burden methods, incorporate
this concept (for reviews, see [3-5]).

In this study, we compare two collapsing methods that
use the genetic information in different ways. Specifically,
we consider the combined multivariate and collapsing
(CMC) method [6] and functional principal component
analysis (FPCA)-based statistic [7] to test for groupwise
association with the simulated disease status in unrelated
individuals. For comparison, we used the case-control data
provided for the Genetic Analysis Workshop 18 (GAW18)
with knowledge of the answers.

Methods
Functional principal component analysis-based statistic
Luo et al [7] use the genome continuum model [8] and
principal component analysis (PCA) as the basis for their
test statistic. After scaling each ROI to the interval of
[0, 1] a ROI-wise integral function f of a linear combina-
tion of the genotype data and a normalized weight func-
tion is constructed. To capture the genetic variations
in the genotype function, the weight function is chosen to
maximize the variance of f. This setting results in an
optimization problem that can be transformed to a PCA
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or an eigenfunction problem. Therefore, the solution deli-
vers not only the optimal weight functions but also princi-
pal component functions for the genotype data of the
considered ROI. Because the optimization problem con-
sists of integral functions and is difficult to solve in closed
form, a solution is derived by discretizing the continu-
ous eigenanalysis problem. Finally, principal compo-
nent scores are constructed using the derived principal
component functions and the genotype data. These
then form the basis of the final FPCA test statistic,
which considers the mean squared distance of averages
of these principal components scores in cases and
controls.

Combined multivariate and collapsing method
The CMC method combines collapsing with a multivariate
test [6]. The group of variants is divided into subgroups on
the basis of predefined criteria, such as allele frequencies.
The variants within each subgroup are collapsed, and a
multivariate test, such as Hotelling’s T2 test or Fisher’s
product method, is applied for the analysis of all groups of
variants together. In this analysis, Fisher’s product method
was used.

Material
We applied both methods to case-control data provided
for GAW18. Genotypes were provided for odd-numbered
autosomes, but we dropped chromosome 5 data because
of quality issues. We considered the simulated dichoto-
mous phenotype of hypertension (HTN) in the sample of
unrelated individuals and defined those individuals as
cases who were defined as affected at least once at any
time point of investigation. Controls were defined as the
complement set of the cases. In the original data set,
there were 157 unrelated individuals. However, only data
from 142 of these individuals were used by the GAW18
organizers to create the 200-replicate data set. Because of
the definition of case and control status with longitudinal
data, the total numbers of cases and controls differed for
each replicate, but in median, there was a ratio of cases
to controls of about 0.84 over all replicates. Analyses
were restricted to minor allele counts, so dosage files
were used.
Gene information data was obtained by merging single-

nucleotide polymorphism (SNP) data with the ENSEMBL
database [9]. In total, there were 8,348,674 SNPs, of which
4,017,987 could be matched to ENSEMBL data.

Figure 1 Type I error rate with respect to proportion of unassociated genes of combined multivariate and collapsing (CMC) method
and the functional principal component analysis (FPCA). Cumulative proportion of unassociated genes exceeding a given type I error using
the CMC method and FPCA.
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Furthermore, data merging resulted in 15,578 genes, of
which 14,525 were included in the analysis because they
had at least two variants; those containing only mono-
morphic variants were dropped. On the basis of these
assumptions, we dropped 4 of the original 54 associated
genes of the simulated data.
For our analyses, we used a modified version of the

FPCA function provided by Luo et al [7] in R. All further
analyses were done in R version 2.15.0 [10]. For CMC,
variants were collapsed with a minor allele frequency
(MAF) of 0.05 or less, and variants with a larger MAF
were investigated separately for each gene. The global sig-
nificance level was set to 0.05.

Results
Figure 1 shows the cumulative proportion of unassociated
genes exceeding a given type I error using CMC and
FPCA. It can be seen that for FPCA, about 92% of the
genes are below a false-positive rate of 0.05, but this is
true for only about 25% of the genes using CMC. The
maximum type I error of a single gene is about 0.88 in
CMC and 0.55 in FPCA.

Figure 2 shows the power for both methods. Whereas
CMC had its highest power of 0.66 for gene KRT23, FPCA
had its highest power in gene SAT2 with 0.30. The second
highest power of FPCA is in gene DBP with 0.075. Table 1
shows the genes that had a power of 0.05 or greater in
both methods. The most frequently identified gene by
both methods simultaneously was SAT2. The power of
FPCA to detect this gene was 0.3; for CMC, it was 0.33.

Discussion
In this study, we compared two different collapsing
approaches using the GAW18 data. We considered the
simulated dichotomous phenotype HTN among the
unrelated individuals without any restriction to MAF or
covariates. The proportion of unassociated genes
exceeding a given type I error of 0.08 for FPCA was
moderate, but CMC’s corresponding proportion of
0.75 was highly unacceptable. The power of both
methods was too low for identifying most of the truly
associated genes. Because CMC had a high false-
positive rate, it cannot be used reliably for judging
power. Its greatest power of 0.66 was observed for the

Figure 2 Power of the combined multivariate and collapsing (CMC) method and the functional principal component analysis (FPCA).
Power of the CMC method and FPCA in a Manhattan-like plot for all odd-numbered autosomes but chromosome 5.

Table 1 Power of top genes for both methods.

Gene Begin End No. of variants Chromosome FPCA CMC

MAP4 47892181 47951731 4694 3 0.070 0.398

GAB2 77926342 78052926 3342 11 0.055 0.219

SAT2 7529551 7531173 23 17 0.303 0.328

DBP 49133819 49140639 33 19 0.075 0.095

Power of top four genes, with gene information, where power of combined multivariate and collapsing (CMC) method and of the functional principal component
analysis (FPCA) is 0.05 or greater.
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gene KRT23. Table 1 illustrates that both methods fail
in identifying associated genes in the simulated data
set. Possibly, a strict filtering of variants by small
MAFs would lead to better performance. Furthermore,
the exclusion of best-guess genotypes or the inclusion
of knowledge about functionality of the variants could
be helpful.
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