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Abstract

The focus of our work is to evaluate several recently developed pooled association tests for rare variants and assess
the impact of different gene annotation methods and binning strategies on the analyses of rare variants under
Genetic Analysis Workshop 18 real and simulated data settings. We considered the sample of 103 unrelated
individuals with sequence data, genotypes of rare variants from chromosome 3, real phenotype of hypertension
status and simulated phenotypes of systolic blood pressure (SBP) and diastolic blood pressure (DBP), and covariates
of age, sex, and the interaction between age and sex. In the analysis of real phenotype data, we did not obtain
significant results for any binning strategy; however, we observed a slight deviation of the p-values from the
uniform distribution based on the protein-damaging variant grouping strategy. Evaluation of methods using
simulated data showed lack of power even at the conservative level of 0.05 for most of the causal genes on
chromosome 3. Nevertheless, analysis of MAP4 produced good power for all tests at various levels of the tests for
both DBP and SBP. Our results also confirmed that Fisher’s method is not only robust but can also improve power
over individual pooled linear and quadratic tests and is often better than other robust tests such as SKAT-O.

Background
Next-generation sequencing (NGS) technology provides
rich data for the analysis of the role of rare variants in
complex human diseases and traits. Because of the low
power associated with analyzing one single rare variant,
many pooled association tests have been proposed for
joint analysis of a group of rare variants. The methods
proposed so far include the earlier linear statistics that are
powerful when most of the variants are causal and have
the same direction of effect [1,2], the quadratic statistics
that are not sensitive to the direction of effect [3-5], and
the more recent hybrid statistics that combine the
evidence from the complementary linear and quadratic
statistics [6,7]. However, few studies evaluate the different
classes of tests, and fewer investigate the impact of differ-
ent variant grouping strategies on the pooled association

analysis, which is the goal of our study here. Using the
Genetic Analysis Workshop 18 (GAW18) real and simu-
lated data, we evaluate two commonly used statistics from
each of the linear and quadratic classes of tests plus
three recently proposed robust statistics, and we investi-
gate five gene-based variant grouping strategies, of which
three focus on coding variants.

Methods
Association tests for rare variants
We considered 7 association tests recently developed for
analyzing rare variants using a sample of unrelated indi-
viduals. All methods considered can be described
through a vector of statistics, S = (S1, ..., SJ), where

Si =
n∑

i=1

(Yi − ŶH0,i)Gij

and J is the total number of single-nucleotide poly-
morphisms (SNPs) in the bin or group of variants under
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study, Yi is the phenotype value of the ith individual,
i = 1,...,n, Gij is the number of rare alleles for the ith
individual at the jth SNP, and ŶH0,i is the fitted pheno-
type value of the ith individual under the null hypothesis
of no association between the phenotype Y and geno-
types G of the group of variants under study. The fitted
phenotype values can depend on a set of covariates X.
The 7 “pooled” association test statistics are functions

of the vector S, aggregating information across the J var-
iants. They include two linear statistics of the form

WLw =
J∑

j=1

wjSj,

where WL1 uses equal weights [1] and WLp uses minor
allele frequency- (MAF, p) based weights [2], two quad-
ratic statistics of the form

WQ = S′AS,

where the C-alpha statistic, WC =
J∑

j=1
S2j , uses A = I [3],

and the Hotelling statistic, WH, uses the inverse of the
estimated covariance matrix of S under the null hypoth-
esis [4,5], and three robust hybrid statistics, SKAT-O [6],
minimum-p and Fisher’s statistics [7], which combine
the association evidence from complementary linear and
quadratic statistics. The minimum-p statistic is

Wmin = min(pL1, pC),

and Fisher’s statistic is

WF = − log(pL1) − log(pC),

where pL1 and pC are p-values, respectively, of the linear
WL1 and quadratic WC tests. The SKAT-O statistic is
similar in nature to the minimum-p statistic [6,7].

Gene annotation and data analysis
For the purpose of this study, we focused on the 103
unrelated individuals with NGS data from the GAW18,
rare variants from chromosome 3, the first of four mea-
surements for systolic blood pressure (SBP), diastolic
blood pressure (DBP) and hypertension status, and cov-
ariates age, sex, and the interaction between age and
sex. Rare variants were defined as SNPs with MAF of
0.05 or less, estimated from the 103 unrelated
sequenced individuals. The analysis of the real data
focused only on the hypertension status; the analysis of
the simulated response data studied premedicated SBP
and DBP values (for medicated individuals we increased
their values of SBP and DBP by 6.2 and 7.9, respectively,
as specified in the provided answers) as well as hyper-
tension status. Last, we analyzed the continuous and
dichotomized values of simulated phenotype Q1, which

is unrelated to the genotypes, to evaluate the type I
error of the 7 statistics.
The selection of groups of rare variants for pooled

association analyses is critical, in terms of statistical power,
for all methods [1-7]. We used several software packages
to annotate the sequenced SNPs. Gene mapping and
variant type annotations were done with ANNOVAR [8].
Variant impact predictions were generated using SIFT [9]
and PolyPhen [10], combined scores were based on
CONDEL [11], and conservation scores were downloaded
from UCSC (placental-mammal) [12]. More details of the
annotation procedures are presented in another GAW18
paper by Nalpathamkalam et al [13].
Based on the variant annotation, we considered a

gene-based approach using three strategies to group/bin
the variants within each gene. We grouped variants that
belong to the same gene and are of the same annotation
type, that is, (a) coding variants, (b) protein-changing
variants, and (c) protein-damaging variants. We note
that (c) is a subgroup of (b), and (b) is a subgroup of (a).
We obtained p-values for each of the 7 statistics by

parametric bootstrap [4,5]. For the continuous response,
we first fitted a linear regression model that includes
age, sex, and interaction between age and sex, which
corresponds to the null hypothesis that the genotypes of
J SNPs are not associated with the continuous response
variable (SBP or DBP) given the other covariates.
Similarly, we fitted logistic regression models with the
same set of covariates when hypertension status is consid-
ered as the response. We then generated bootstrap
samples from the fitted models and calculated the 7 test
statistics for each sample. Finally, we obtained the empiri-
cal p-value for each test as the proportion of bootstrap
samples with statistics more extreme than the one
calculated from the original data. For each statistic and a
group of SNPs, we initially used 1000 bootstrap samples to
estimate the p-value. If the p-value was less than 0.01, we
used an additional 100,000 bootstrap samples to estimate
the p-value more accurately. For the p-value of SKAT-O,
we used the available SKAT-O package [6].

Results
Gene annotation
Based on the sequence data on chromosome 3, there
were 7435 high-quality variants annotated as coding var-
iants, 4099 as protein-changing variants, and 1791 as
protein-damaging variants (Table 1). However, these
numbers were reduced with the restriction of MAF of
0.05 or less (Table 1).

Real data
We evaluated the type I error for all 7 methods using
Q1 as the outcome. Because the p-values for all meth-
ods except SKAT-O were based on parametric bootstrap
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resampling, we observed correct type I error for all the 6
methods as expected. We also observed correct type I
error for SKAT-O (results not shown).
In the analysis of hypertension status based on the

real data, none of the genes appeared to be statistically
significant using a crude Bonferroni correction for
multiple testing (0.05/888 = 5.63 × 10−5 for coding,
0.05/720 = 6.94 × 10−5 for protein changing, and 0.05/
460 = 1.1 × 10−4 for protein damaging). However, we
observed that with a more refined selection of SNPs,
such as the protein-damaging variants compared with
the coding variants, there are deviations (i.e., more small
p values) from the expected Unif (0,1) distribution for
p-values of all 7 tests, suggesting association. As an
example, Figure 1 presents the quantile-quantile plots
for Fisher’s statistic for the set of genes with at least 2
variants (denoted as reduced compared with the number
of genes with at least one variant) based on each of the
three binning strategies (a) to (c) in Table 1.

Simulated data
The last stage of our analysis focused on the simulated
data to assess the performance of the 7 methods in
terms of power. As a proof of principle, the results
presentation here focuses on binning strategy (a). Of the
31 causal genes on chromosome 3 influencing SBP or
DBP, 25 genes had at least one rare variant annotated as
coding and polymorphic in the sample of 103 unrelated
individuals. For most of these causal genes, none of the
7 tests had reasonable power (10% ore more) for any of
the three phenotypes even at the conservative type 1
error level of 0.05 (Table 2).
We first note that ABTB1, GPR160, and PDCD6IP do

not have causal rare variants, but the estimated power
for some tests is larger than 10%. Such results are due
to linkage disequilibrium (LD) between non-causal rare
variants in genes with causal rare variants from other
genes. For example, the non-causal rare variant with
coordinate 127395914 in ABTB1 is highly correlated

Table 1 Descriptive statistics of different grouping or binning strategies based on annotations of sequence variants
on chromosome 3

Strategies of grouping
variants in a gene

Total # of
variants

Restricting to variants with MAF ≤ 0.05

# of genes with ≥1
variant

# of genes with ≥2
variants

Average # of variants per gene
with ≥1 variant

Average
MAF

a. Coding variants 7435 900 690 4.34 0.012

b. Protein changing 4099 729 479 2.95 0.011

c. Protein damaging 1791 462 210 1.94 0.011

d. Protein changing or
conservative T1

15,326 (4099 +
11227)

1034 841 8.17 0.011

e. Protein damaging or
conservative T2

5987 (1791 +
4196)

735 438 4.31 0.012

Descriptive statistics for rare variants with minor allele frequencies of 0.05 or less were constructed from the sample of 103 unrelated individuals. The number of
genes and average number of variants per gene were slightly reduced when we analyzed the real data because the number of individuals was reduced to 96
after consideration of missing phenotype and covariates.

Figure 1 Quantile-quantile plots of -log10 (p-values) based on Fisher’s statistic for all genes with 2 or more rare variants (reduced) in
real data. (A) Coding (reduced). (B) Protein change (reduced). (C) Protein damage (reduced). See Table 1 for detailed variant annotation and
binning strategies A to C. The p-values were obtained using the parametric bootstrap method as described in the text for hypertension status.
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with the causal variant with coordinate 48040284 in
MAP4. Similarly, we observed that the genotype of a
single non-causal rare variant (169801953) in GPR160 is
identical to the genotype of a causal rare variant
(47913455) in MAP4 in the sample of 103 individuals
considered.
Results in Table 2 clearly show that individual pooled

linear and quadratic statistics can have substantial differ-
ence in power even when all causal rare variants have
effects in the same direction. For example, for the causal
BTD gene, the estimated power for the two linear statistics
was significantly larger than those for the two quadratic
statistics (for both SBP and DBP), but the pattern is
reversed for ABTB1 (for both SBP and DBP) and
PPP2R3A (for DBP). In contrast, the three hybrid statistics,
Wmin, WF, and WSKAT-O, are robust: for each gene, they are
comparable in terms of power to the method with the
maximum power for that gene. We also observed that
Fisher’s method, which combines p-values from the linear
and quadratic test statistics, has better power in most
cases than the other two robust statistics, minimum-p and
SKAT-O, and it is the best or the second best option in
many cases.
Results in Table 2 also show that, with the exception

of MAP4, all tests have low power even at the 0.05 level;

adjusting for multiple testing will further decrease power.
Focusing on MAP4 and BTD, the two genes with the lar-
gest power for SBP, we investigated the relationship
between power and level of the tests using a receiver oper-
ating characteristic (ROC) curve (Figure 2). For MAP4, the
Fisher’s method consistently outperforms all other tests,
and power is above 20% even at the 10−5 level; for BTD,
all tests have power less than 20% even at the 0.01 level.
We observed a similar pattern with DBP; analyses for
hypertension were not considered because of the low
power even at the 0.05 level.

Discussion
We investigated several gene-based grouping strategies
for rare variants and analyzed both the real and simu-
lated phenotype data. We observed that further restric-
tion of rare variants based on annotation is promising
(e.g., from coding to protein damaging); however, we
did not observe statistically significant results after
adjusting for multiple hypothesis testing. The strategies
presented so far focused on coding variants. We also
considered two other strategies that include non-coding
variants but restricted to variants that belong to conser-
vation tier 1 group (T1) (PhastCons score >0 and Phy-
loP score >1) and tier 2 group (T2) (PhastCons >400

Table 2 Empirical power for the 7 association tests using simulated phenotype data

Gene Total # of rare
variants

# of causal rare
variants

Methods

Linear
WL1

Linear
WLp

Quadratic
WC

Quadratic
WH

Minimum
Wmin

Fisher’s
WF

SKAT-O
WSKAT-O

Outcome = SBP

BTD 6 2 0.29 0.33 0.15 0.15 0.24 0.27 0.25

MAP4 8 4 0.96 0.93 0.96 0.91 0.97 0.99 0.96

ABTB1 6 01 0.05 0.05 0.16 0.09 0.12 0.12 0.08

PPP2R3A 8 2 0.25 0.18 0.21 0.13 0.28 0.32 0.19

GPR160 1 01 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Outcome = DBP

BTD 5 2 0.36 0.35 0.16 0.11 0.29 0.31 0.26

MAP4 8 4 0.90 0.88 0.86 0.73 0.90 0.94 0.91

ABTB1 6 01 0.10 0.06 0.14 0.05 0.11 0.11 0.08

PPP2R3A 8 2 0.06 0.04 0.20 0.11 0.14 0.15 0.09

GPR160 1 01 0.27 0.27 027 0.27 0.27 0.27 0.27

Outcome = hypertension status

PDCD6IP 6 01 0.17 0.14 0.17 0.13 0.19 0.20 0.18

FLNB 13 4 0.07 0.07 0.10 0.11 0.08 0.11 0.08

SENP5 4 1 0.06 0.05 0.07 0.16 0.08 0.07 0.06

Two continuous phenotypes, systolic blood pressure (SBP) and diastolic blood pressure (DBP), and one binary phenotype, hypertension status, were analyzed.
Rare variants (minor allele frequency ≤0.05) were grouped by gene and annotated as coding (strategy a in Table 1). All causal variants have the same direction of
effect by the Genetic Analysis Workshop 18 simulation design. Level of tests was set to 0.05 because of a lack of power at a more stringent level. Genes
presented are the ones with maximum power (bolded) among the 7 tests greater than 10% at the 0.05 level.
1“Power” for these genes with no causal variants are attributable to linkage disequilibrium between non-causal rare variants in these genes and causal variants in
other genes (see text for details).
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and PhyloP score >1.5) (see Nalpathamkalam et al [13]
for more details on these annotation strategies). These
lead to grouping variants from the same gene, which are
(d) protein-changing or conservative T1 variants with
11,227 high-quality variants and (e) protein-damaging or
conservative T2 variants with 4196 high-quality variants
(Table 2). These additional strategies could be more
powerful than the coding-only strategies because causal
rare variants from regulatory regions could be added to
the analysis. However, we note that the simulated causal
variants in GAW18 were all in or near gene. When
strategies (d) and (e) were considered in our additional
analysis with the real binary hypertension phenotype, we
did not observe significant improvement in terms of
departure of the empirical p-value distribution from the
null distribution. We did, however, observe that top-
ranked genes differ considerably among the different
binning strategies, further confirming the practical
importance of annotation in analyzing a group of rare
variants [5].
In the analysis of simulated data, as a proof of princi-

ple, we focused on the comparison of various methods
using binning strategy (a). Most of the genes with causal
variants had poor or no power even at the conservative
level of 0.05. This is due to the small sample size, small
effect sizes, and perhaps our binning strategy. Neverthe-
less, analysis of MAP4 produced good power for all tests
at various levels of the tests for both DBP and SBP. We
also noticed that studies with hypertension status as a
response variable generally had lower power than stu-
dies with SBP and DBP, indicating that dichotomization

of blood pressure into just two groups masks the effect
of the genes. Our results also confirmed that Fisher’s sta-
tistic is not only robust but can also improve power over
individual pooled linear and quadratic tests and is often
better than SKAT-O, which relies on the minimum p-
value principle [7]. The results here are consistent with
what has been reported in the literature (e.g., [4,5]):
power differences between linear and quadratic statistics
can be substantial, and robust statistics are needed to
provide consistently acceptable power across different
genetic settings. In addition, Fisher’s statistic performs
best when, as here, “the majority of the causal variants
have the same direction of effect (either deleterious or
protective)” [7]. Finally, we show that LD between causal
variants in one gene and non-causal variants in nearby
genes can result in potential confounding and apparent
false positives.
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