POSTER PRESENTATION

Open Access

Genetic transformation of sweet oranges to overexpress SABP2 gene

Lísia Borges Attílio^{1*}, Polyana Kelly Martins², Laura Melissa Gómez-Krapp¹, Marcos Antônio Machado¹, Juliana Freitas-Astúa³

From 5th Congress of the Brazilian Biotechnology Society (SBBIOTEC) Florianópolis, Brazil. 10-14 November 2013

Background

The history of the world citrus industry is marked by a series of diseases caused by different etiologic agents. Several of them are characterized as biotrophic pathogens like Xanthomonas citri subsp. citri, three Candidatus Liberibacter spp and Citrus leprosis virus C (CiLV-C). In plant-pathogen interactions, the role of salicylic acid (SA) in activating defense related genes is well recognized [1]. The SABP2 (Salicylic acid-binding protein 2) is required to convert methyl salicylate to SA as part of the signal transduction pathway that activates systemic acquired resistance, induces PR expression, and enhances disease resistance. Due to the reduced or absence of genetic resistance to these pathogens in commercial sweet orange cultivars, the genetic transformation to over-express a gene involved in the defense response of plants is a possible alternative to produce tolerant or resistant plants to biotrophic pathogens.

Methods

The aim of this study was to produce 'Hamlin' sweet orange (*Citrus sinensis* L. Osb.) transgenic plants, via *Agrobacterium tumefaciens*, over-expressing the *SABP2* gene from sweet orange driven by the constitutive promoter ubiquitin (*Ubq10*). The *SABP2* gene was cloned into pCambia 2301 and inserted into *A. tumefaciens* EHA 105. The genetic transformation was performed using epicotyl segments from seedlings [2].

Results and conclusions

A total of 620 explants in three independent experiments were introduced and approximately 336 shoots were regenerated. The GUS histochemical test was

¹Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil

Full list of author information is available at the end of the article

performed and confirmed the transformation of 30 positive shoots. These shoots are being grafted onto Carrizo citrange [*Citrus sinensis* x *Poncirus trifoliata* (L.) Raf.] seedlings grown in test tubes containing MS culture medium. The presence of the transgene will be evaluated by PCR using specifics primers that amplify part of the ubiquitin promoter and part of the gene. *SABP2* expression levels in transgenic plants will be assessed through qPCR. After bud multiplication, transgenic plants will be evaluated for their response to citrus canker, HLB and leprosis.

Acknowledgements

INCT-Citrus (Fapesp and CNPq), Embrapa-Capes grant and EMBRAPA-Monsanto agreement (02.08.05.004.00.00).

Authors' details

¹Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil. ²EMBRAPA Agroenergy - Estação Parque Biológico, Brasilia, DF, Brazil. ³EMBRAPA Cassava & Fruits, Cruz das Almas, Bahia, Brazil Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil.

Published: 1 October 2014

References

- Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L: Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. *Proceedings of the National Academy* of Sciences 2005, 102(5):1773-1778.
- Miyata LY1, Harakava R, Stipp LC, Mendes BM, Appezzato-da-Glória B, de Assis Alves Mourão Filho F: GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters. *Plant Cell Report* 2012, 31(11):2005-2013.

doi:10.1186/1753-6561-8-S4-P109 Cite this article as: Attílio *et al.*: Genetic transformation of sweet oranges to over-express SABP2 gene. *BMC Proceedings* 2014 8(Suppl 4): P109

© 2014 Attilio et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.