POSTER PRESENTATION

Open Access

Xylose and cellobiose fermentation by yeasts isolated from the Brazilian biodiversity

Adriane Mouro^{1*}, Raquel M Cadete², Renata O Santos², Carlos A Rosa², Boris U Stambuk¹

From 5th Congress of the Brazilian Biotechnology Society (SBBIOTEC) Florianópolis, Brazil. 10-14 November 2013

Background

The production of fuel ethanol has become important in recent years due not only to the future depletion of fossil fuels, but also environmental concerns. An attractive source of raw material for ethanol production is the lignocellulosic biomass, composed of lignin, cellulose and hemicellulose. In the case of Brazil, the sugarcane bagasse is an interesting source of cellulose and hemicellulose, polymers that can be used in the fermentative process for fuel alcohol production [1]. Although the industrial yeast Saccharomyces cerevisiae efficiently ferments hexoses, this yeast is unable to ferment pentoses such as xylose (present in hemicellulose hydrolysates) or the disaccharide cellobiose (present in cellulose hydrolysates). Thus, we have characterized the enzymes and transport systems involved in xylose and cellobiose fermentation by yeasts species isolated in rotten wood from several Brazilian ecosystems [2-4].

Methods

The xylose fermenting yeasts *Spatahspora arborariae*, *S. passalidarum* and *Candida queiroziae* were grown on rich YP (2% peptone and 1% yeast extract) medium with 2% of glucose, xylose or cellobiose as carbon source. The xylose reductase activity was measured by monitoring the oxidation of NADPH or NADH, while the xylitol dehydrogenase activity was measured by monitoring the reduction NAD⁺ or NADP⁺ at 340 nm as described [5]. The intracellular β -glucosidase was assayed using permeabilized yeast cells using cellobiose or p-nitrophenyl- β -glucopiranosíde (pNP β G) as substrates. The active proton co-transport with xylose or cellobiose was determined using a pH-meter as previously described for other yeast sugar-H⁺ symporters.

¹Universidade Federal de Santa Catarina, Departamento de Bioquímica, Florianópolis, SC, Brazil

Full list of author information is available at the end of the article

Results and conclusion

Our results showed that the fermentation of xylose, cellobiose and glucose is a variable trait in the yeasts isolated from rotten wood. S. arborariae and S. passalidarum fermented xylose better than glucose probably due to a xylose reduct ase with significant activity ($K_{\rm m}$ of 10-18 $\mu {\rm M}$ and V_{max} of 0.38-0.50 U mg⁻¹) not only with NADPH, but also with NADH as cofactor, while the xylitol dehidrogenase was totally dependent on NAD⁺ ($K_{\rm m}$ of 100 μ M and V_{max} of 0.25 U mg⁻¹). Our results also show that S. arborariae has a H⁺-xylose cotransport system with low affinity and high capacity ($K_{\rm m}$ of 25 mM and $V_{\rm max}$ of 35 nmol mg⁻¹ min⁻¹) for the sugar. While this last yeast could not ferment cellobiose, only half of the S. passalidarum strains could ferment this sugar due to the presence of an intracellular β -glucosidase as already described for *C.queiroziae* [3], a yeast specie which has an high affinity H⁺-cellobiose cotransport system (K_m of 1,5 mM and V_{max} of 19 nmol mg⁻¹ min⁻¹). Thus, the xylose and cellobiose fermenting yeasts characterized in this work may constitute an interesting source of enzymes and/or transporters (and their corresponding genes) with more appropriate characteristics for the fermentation of these sugars, that may the expressed in industrial yeasts aimed at optimizing bioethanol production in Brazil.

Acknowledgements

This work was funded by the Brazilian agencies CNPq, FAPESC and FINEP.

Authors' details

¹Universidade Federal de Santa Catarina, Departamento de Bioquímica, Florianópolis, SC, Brazil. ²Universidade Federal de Minas Gerais, Departamento de Microbiologia, Belo Horizonte, MG, Brazil.

Published: 1 October 2014

References

 Stambuk BU, Eleutherio ECA, Florez-Pardo LM, Souto-Maior AM, Bon EPS: Brazilian potential for biomass ethanol: challenge of using hexose and pentose co-fermenting yeast strains. J Sci Ind Res 2008, 67:918-926.

© 2014 Mouro et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

- Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL, Stambuk BU, Gomes FCO, Lachance MA, Rosa CA: Spathaspora arborariae sp. nov., a D-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 2009, 9:1338-1342.
- Santos R, Cadete RM, Badotti F, Mouro A, Wallheim DO, Gomes FCO, Stambuk BU, Lachance MC, Rosa CA: Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest. Anton Leeuwen 2011, 99:635-642.
- Cadete RM, Melo MA, Dussán KJ, Rodrigues RC, Silva SS, Zilli JE, Vital MJ, Gomes FC, Lachance MA, Rosa CA: Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. *PLoSOne* 2012, 7:e43135.
- Walfridsson M, Anderlund M, Bao X, Hanh-Hägerdal B: Expression of different levels of enzymes from Pichia stiptis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilization. Appl Microbiol Biotechnol 1997, 48:218-224.

doi:10.1186/1753-6561-8-S4-P202

Cite this article as: Mouro *et al.*: **Xylose and cellobiose fermentation by yeasts isolated from the Brazilian biodiversity**. *BMC Proceedings* 2014 **8**(Suppl 4):P202.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit