POSTER PRESENTATION

Open Access

Cloning of oxidosqualene cyclases from *Maytenus ilicifolia* for synthetic biology

Cristina B Carvalho^{*}, Thaís Barboni Alves, Sandro Roberto Valentini, Cleslei Fernando Zanelli, Maysa Furlan, Tatiana Maria Souza-Moreira

From 5th Congress of the Brazilian Biotechnology Society (SBBIOTEC) Florianópolis, Brazil. 10-14 November 2013

Introduction

Pentacyclic triterpenes are secundary metabolites which are promising molecules in the pharmaceutical field and food and material industries. These compounds are formed by the cyclization of oxidosqualene catalyzed by oxidosqualene cyclases (OSC) [1]. The aim of this study is to clone the OSC genes from the leaves of *Maytenus illicifolia*, a medicinal species from Brazil.

Material and methods

For this purpose, we adopted the strategy of RT-PCR using degenerated primers obtained from sequences of known plant OSC genes. Total RNA was extracted from leaves of *M. ilicifolia* and used in the synthesis of cDNA. The PCR amplification of core fragments of OSC genes was performed with partially degenerated primers designed to anneal to highly conserved regions among OSC genes. The cloned fragments were sequenced and specific primers were designed for the rapid amplification of cDNA end (RACE) of 3' regions and for a first round amplification of 5' extension. After sequencing, another set of specific primers were generated for the RACE of 5' regions. Finally, it was possible to clone the full-length cDNA of the OSCs and confirm the predicted identity of the genes by sequencing [2].

Results and discussion

In silico assembly and sequencing of the full-length cDNA covered the ORF of two main different groups of OSCs with ~2500 bp. Multiple alignment of these genes showed identity of about 50% between those two groups. Comparison of *M. ilicifolia* OSC genes with those described in the Genebank revealed that one group showed high identity (~90%) with cycloartenol synthase enzymes, while the

Sao Paulo State University (UNESP), Araraquara, SP, Brazil

other one showed high identity (>75%) with triterpene synthases as beta-amyrin and lupeol synthases.

Conclusions

Cloning of OSC genes from the leaves of *M. ilicifolia* demonstrated two main groups of OSC enzymes present: the cycloartenol synthase, which is part of the plant primary metabolism [3] and one triterpene synthase, which may be part of the secondary metabolism [3]. Future work using functional expression of these cloned genes in *Saccharomyces cerevisiae* will further characterize the oxidosqualene cyclases from *M. ilicifolia* leaves.

Published: 1 October 2014

References

- Withers ST, Keasling JD: Biosynthesis and engineering of isoprenoid small molecules. Applied Microbiology and Biotechnology 2007, 73(5):980-990.
- Wang Z, Yeats T, Han H, Jetter R: Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe daigremontiana. *The Journal of Biological Chemistry* 2010, 285(39):29703-29712.
- Phillips DR, Rasbery JM, Bartel B, Matsuda SP: Biosynthetic diversity in plant triterpene cyclization. Current Opinion in Plant Biology 2006, 9(3):305-314.

doi:10.1186/1753-6561-8-S4-P241

Cite this article as: Carvalho *et al.*: **Cloning of oxidosqualene cyclases** from *Maytenus ilicifolia* for synthetic biology. *BMC Proceedings* 2014 8(Suppl 4):P241.

© 2014 Carvalho et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.