POSTER PRESENTATION

Open Access

Evaluation of antifungal and cytotoxic activity of *trans*-Chalcone and α -Solanine

Tatiana Takahasi Komoto^{*}, Gabriel Silva, Tamires Bitencourt, Bruna Azevedo Cestari, Mozart Marins, Ana Lúcia Fachin

From 5th Congress of the Brazilian Biotechnology Society (SBBIOTEC) Florianópolis, Brazil. 10-14 November 2013

Background

Dermatophytes are adapted to grow in keratinized tissues such as skin, nail and hair. Trichophyton rubrum is the most frequent cause of dermatophytosis in Brazil and in the world [1]. Despite its incidence there are only a limited number of antifungal drugs available for clinical use and some drugs are highly toxic to humans. In this regard, chalcones and alkaloids are phytochemical products which provide a rich source of chemical diversity for the development of new antifungals. Chalcones inhibit the biosynthesis of the cell wall and activity of fatty acid synthase in yeast [2,3]. The glycoalkaloid α -Solanine purified from potate sprout presents antifungal activity by altering cell membrane integrity and inhibition of sporulation [4]. The aim of the present study was to evaluate the minimum inhibitory concentration (MIC) and cytotoxicity (by MTT) of *trans*-Chalcone and α -Solanine toward strain MYA3108 of *T.rubrum* and the keratinocyte cell line HaCat, in order to evaluate the potential use of these phytochemicals against fungal skin infection.

Materials and methods

The antifungal activity of the compounds was determinated by using the M38-A microdilution technique according to the Clinical and Laboratory Standards Institute [5] toward strain *T.rubrum* for 7 days at 28°C. Keratinocytes were cultures in RPPMI supplemented with 10% fetal calf serum and incubated at 37°C and 5% CO_2 . Cells were plated (2.5x10⁵ cells/mL) in a 96-well tray 24 h prior to the beginning of the experiment. After addition of several concentrations of natural compounds or the vehicle, cells were analyzed after a period of 24 h using the MTT assay.

Results

The MICs of α -Solanine and *trans*-Chalcone were 7.8 µg/mL, showing effectiveness against *T. rubrum*, while the inhibition of the HaCat cell line by *trans*-Chalcone (7.8 µg/ml) and α -Solanine (50 µg/ml) were 45.78% and 68.86% respectively.

Conclusions

Finally, the α -Solanine is a potential candidate for the development of new antifungal drugs against *T. rubrum*, due to its significant antifungal activity and lower citotoxicity for human keratinocytes.

Financial support

This work was supported for CAPES and FAPESP.

Published: 1 October 2014

References

- 1. ME Elewski BE: A U.S. epidemiologic survey of superficial fungal diseases. Journal of the American Academy of Dermatology 1996, 35:539-542.
- Boeck P, Leal PC, Yunes RA, Filho VC, Lopez S, Sortino M, Escalante A, Furlan RL, Zacchino S: Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Archiv der Pharmazie 2005, 338:87-95.
- Li XC, Joshi AS, ElSohly HN, Khan SI, Jacob MR, Zhang Z, Khan IA, Ferreira D, Walker LA, Broedel SE, et al: Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies. *Journal of natural* products 2002, 65:1909-1914.
- Fewell AM, Roddick JG: Potato glycoalkaloid impairment of fungal development. Mycological Research 1997, 101:597-603.
- Rex JH, Alexander BD, Arthington-Skaggs B, Brown SD, Chaturveli V, Espinel-Ingroff A, Ghannoum MA, Knapp CC, Motyl MR, Ostrosky-Zeichner L, *et al*: Reference method for broth dilution antifungal susceptibility testing of conidium forming filamentous fungi. NCCLS 2008, 28:1-9.

doi:10.1186/1753-6561-8-S4-P36

Cite this article as: Komoto *et al.*: Evaluation of antifungal and cytotoxic activity of *trans*-Chalcone and α -Solanine. *BMC Proceedings* 2014 8(Suppl 4):P36.

Universidade de Ribeirão Preto, Ribeirania, Brazil

© 2014 Komoto et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.