POSTER PRESENTATION

Open Access

Antimicrobial activity of the *trans-cinnamaldehyde* on nosocomial enteric bacilli producers of extended spectrum β -lactamase (ESBL)

Vicente Pinto^{1*}, César Barbosa², Pedro Magalhães³, Camila Coelho⁴, Joseires Fontenelle⁵, Gerardo Cristino-Filho¹, Helliada Chaves², Antonio Silva², Alrieta Teixeira², Mirna Bezerra¹

From 5th Congress of the Brazilian Biotechnology Society (SBBIOTEC) Florianópolis, Brazil. 10-14 November 2013

Background

The extended spectrum ß-lactamases (ESBL) are enzymes that produce resistance to ß-lactam antibiotics, including penicillins, wide spectrum cephalosporins and aztreonam, by cleavage of ß-lactam ring (BUSH & JACOBY, 2010). Since ESBL-producing bacteria are frequently associated with nosocomial infections, treatment options are becoming increasingly limited (RAWAT & NAIR, 2010). In this context, the discovery of compounds which can inhibit the growth of micro-organisms which produce these enzymes becomes increasingly important.

Methods

In this study were evaluated the antimicrobial activity of *trans-cinnamaldehyde* by microdilution technique and also determined its minimum bactericidal concentration (MBC) on nosocomial enteric bacilli ß-lactamases producers. We analyzed 45 bacterial species, 36 to the *Enterobacteriaceae* family and nine of the other species of Gram-negative bacteria. The most prevalent species ESBL-producing was *Klebsiella pneumoniaessp. pneumoniae* (70% of isolates of this specie). The detection of ESBL was performed by phenotypic testing (approximation discs, combination discs and minimum inhibitory concentration - MIC - using E-test).

Results and conclusions

The *trans-cinnamaldehyde* showed antibacterial activity and promote inhibition of growth for all planktonic microorganisms ESBL positive tested, with MIC ranging between 0.95 mM and 1.90 mM. Bactericidal activity

¹Faculty of Medicine of Sobral, Master's Program in Biotechnology, Federal University of Ceará (UFC), Campus-Sobral, Ceará, Brazil

Full list of author information is available at the end of the article

was detected at a concentration of 1.90 mM, regardless of the species analyzed in this study. Our results suggest that *trans-cinnamaldehyde* is a compound with potential antimicrobial against ESBL-producing bacteria and can be employed both in preventing infection through their application in solutions used in the processes of disinfection of hospital instruments and equipment but also in drug development for topical action.

Authors' details

¹Faculty of Medicine of Sobral, Master's Program in Biotechnology, Federal University of Ceará (UFC), Campus-Sobral, Ceará, Brazil. ²Faculty of Dentistry of Sobral, Federal University of Ceará (UFC), Campus-Sobral, Ceará, Brazil. ³Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil. ⁴Faculty of Medicine of Sobral,Federal University of Ceará (UFC), Campus-Sobral, Ceará, Brazil. ⁵Masters in Biotechnology, Federal University of Ceará (UFC), Campus-Sobral, Ceará, Brazil.

Published: 1 October 2014

References

- 1. Bush K, Jacoby GA: Updated functional classification of β-lactamases. Antimicrob Agents Chemother 2010, 54(3):969-976.
- 2. Rawat D, Nair D: Extended-spectrum β-lactamases in gram negative bacteria. J Glob infect dis 2010, 2(4):263-274.

doi:10.1186/1753-6561-8-S4-P89

Cite this article as: Pinto *et al.*: Antimicrobial activity of the *trans-cinnamaldehyde* on nosocomial enteric bacilli producers of extended spectrum β -lactamase (ESBL). *BMC Proceedings* 2014 8(Suppl 4):P89.

© 2014 Pinto et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.