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Abstract

Background: Genome wide association studies are now widely used in the livestock sector to estimate the
association among single nucleotide polymorphisms (SNPs) distributed across the whole genome and one or more
trait. As computational power increases, the use of machine learning techniques to analyze large genome
widedatasets becomes possible.

Methods: The objective of this study was to identify SNPs associatedwith the three traits simulated in the 16th
MAS-QTL workshop dataset using the Random Forest (RF) approach. The approach was applied to single and
multiple trait estimated breeding values, and on yield deviations and to compare them with the results of the
GRAMMAR-CG method.

Results: The two QTL mapping methods used, GRAMMAR-CG and RF, were successful in identifying the main QTLs for
trait 1 on chromosomes 1 and 4, for trait 2 on chromosomes 1, 4 and 5 and for trait 3 on chromosomes 1, 2 and 3.

Conclusions: The results of the RF approach were confirmed by the GRAMMAR-CG method and validated by the
effective QTL position, even if their approach to unravel cryptic genetic structure is different. Furthermore, both
methods showed complementary findings. However, when the variance explained by the QTL is low, they both
failed to detect significant associations.

Background
Genome wide association studies (GWAs) are now
widely used in the livestock sector to estimate the asso-
ciation among multiple single nucleotide polymorphisms
(SNPs) distributed across the whole genome and one or
more trait. GWAs are typically carried out on a single-
point by performing a marginal chi-square test or
regression. However, these methods do not take into
account linkage disequilibrium between markers and the
genetic structure of the population that may have a
large impact on structured populations (e.g. cattle popu-
lations). Approaches for genome wide pedigree-based
quantitative trait loci (QTL) analysis have been devel-
oped (e.g. GRAMMAR-CG), which are based on mixed

model and regression, where the genomic kinship
matrix estimated through genomic marker data can be
used to correct for familiar correlation and cryptic relat-
edness [1].
As computational power increases, the use of more

advanced machine learning techniques to analyze large
genome wide datasets becomes possible [2], these tech-
niques include Support Vector Machines [3], Bayesian
Networks [4] and Random Forest [5].
The Random Forests (RF) algorithm [6] is a machine-

learning method that has been widely applied to classifi-
cation and regression problems, and is particularly well
suited to circumstances in which the number of poten-
tial explanatory variables exceeds the number of obser-
vations, as is the case for GWAs. The RF algorithm
produces a collection of trees (forest), each grown on a
different bootstrap sample of observations, and at each
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split (node) of a tree, a different random subset of
predictors (SNP) is evaluated to identify the best split.
The final scores are then calculated by aggregating pre-
dictions resulting from all the trees grown in the forest.
RF embraces a combination of characteristics that

makes it appropriate for genetic applications: it is well
suited for very large datasets; it is non-parametric, thus
does not require a causal model to be specified, it is
highly parallelizable and considers interactions between
predictors.
The objective of this study was to identify SNPs asso-

ciated to the three traits simulated in the 16th MAS-
QTL workshop dataset using the Random Forest
approach and to compare them with the results obtained
by the Grammar-CG method. SNPs identified by both
methods were verified with the actual QTL positions.

Methods
Dataset
The dataset used was provided by the organisers of the
16th QTLMAS workshop and consisted of 4080 indivi-
duals (G0 to G4). The simulated genome was 499.750 Mb
consisting of 5 chromosomes carrying 2,000 equally dis-
tributed SNPs. The GWA analysis was conducted on 3000
samples, all females belonging to generations G1 to G3,
for which phenotypic information for three traits (yield
deviations) was provided. The analysis was performed on:
yield deviations (YD1, YD2 and YD3), the estimated
breeding values (EBV) obtained from a single trait model
(tr1_ST, tr2_ST, tr3_ST) and the EBVs obtained from a
multiple trait model (tr1_MT, tr2_MT, tr3_MT).

Analysis
Variance components and EBV estimation
Variance components and EBVs were obtained sepa-
rately, using REMLF90 and BLUPF90 programs, respec-
tively [7]. The model used to estimate variance
components and EBVs was:

yk,i,j = µk + GENk,i + Animalk,j + ek,i,j

where μ is a general mean for the kth trait, GEN is a
fixed effect for i generations (i = 1 to 3), Animal is a
random animal effect with distribution ~ N(0,s2

a),
where s2

a is the additive genetic variance, and e is the
random residual with distribution ~ N(0, s2

e), where s2e
is the residual variance. Covariance between traits was
considered only in multiple-trait analysis.

Random Forest
Feature selection (SNPs) analysis was performed with the
randomForest package in R [8] using 3000 individuals
and the 9042 SNPs that passed quality control checks
out of the total 10000 SNP. The minimum size of the

terminal nodes was set to 5. The number of trees grown
was set to 1000. The subset of samples evaluated at each
tree was 70% of the total number of samples (n = 2100).
The number of variables evaluated at each node was set
to the square root of the number of predictors (p = 94).
All SNPs were ordered by Mean decrease Gini index [6]
and the most strongly associated SNPs are at the top of
the lists shown in Table 2, 3 and 4.

Grammar-CG
Genome-wide association analysis was performed with
the GenABEL package in R using a three step GRAM-
MAR-CG (Genome wide Association using Mixed Model
and Regression - Genomic Control) approach [1,9].

Results and discussion
Variance components and EBV estimation
Mean and standard deviations of the nine phenotypes
used are shown in Table 1. The heritability estimates
resulting from the single trait model were 0.38, 0.38 and
0.50 for trait 1, 2 and 3, respectively. Large genetic cor-
relations between traits 1 and 2 were observed (0.83),
whereas lower genetic correlation was observed for trait
2 and 3 (0.12). Negative correlation was observed
between traits 1 and 3 (-0.44).

Association mapping
The two QTL mapping methods used, GRAMMAR-CG
and RF, were successful in identified the largest QTLs
for trait 1 on chromosomes 4 and 1 in position 24 Mb
and 84 Mb, for trait 2 on chromosomes 4, 5 and 1 in
position24 Mb, 68 Mb and 14 Mb and for trait 3 on
chromosomes 1, 2 and 3 at 84 Mb, 79 Mb and 36 Mb
respectively. Positions and names of the significant
SNPs are shown in Tables 2, 3 and 4.
Both methods showed good precision in the identifica-

tion of the QTL in comparison with the “real” QTL

Table 1 Statistics of the nine phenotypes used in the
GWAs.

Trait n Mean Sd

YD1 3000 0 176,519

YD2 3000 0 9,512

YD3 3000 0 0,024

tr1_MT 3000 -0,238 81,495

tr2_MT 3000 0,031 4,264

tr3_MT 3000 0 0,015

tr1_ST 3000 -0,555 79,057

tr2_ST 3000 0,0041 4,254

tr3_ST 3000 0 0,014

Yield deviations for the three traits (YD1, YD2 and YD3), estimated breeding
values (EBV) obtained from a single trait model (tr1_ST, tr2_ST, tr3_ST) and
from a multiple trait model (tr1_MT, tr2_MT, tr3_MT).
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Table 2 Top SNPs identified by the Random Forest and GRAMMAR-CG Approach for Trait 1

Trait 1

Random Forest method Grammar_CG

Multiple Trait EBV Multiple Trait EBV

SNPname CHR pos Kb name CHR pos Kb p-value

SNP6499 4 24.900 SNP6499 4 24.900 3,6E-17

SNP4688 3 34.350 SNP1682 1 84.050 1,2E-07

SNP4674 3 33.650 SNP1683 1 84.100 4,4E-06

SNP4197 3 9.800 SNP6498 4 24.850 7,2E-06

SNP7145 4 57.200 SNP3585 2 79.200 1,1E-05

SNP1012 1 50.550 SNP6501 4 25.000 1,1E-05

SNP1614 1 80.650 SNP6469 4 23.400 8,4E-05

SNP6534 4 26.650 SNP9362 5 68.050 9,5E-05

Single Trait EBV Single trait EBV

SNP6499 4 24.900 SNP6499 4 24.900 9,8E-16

SNP4688 3 34.350 SNP1682 1 84.050 9,8E-06

SNP4674 3 33.650 SNP6501 4 25.000 1,4E-05

SNP4197 3 9.800 SNP6498 4 24.850 3,0E-05

SNP1012 1 50.550 SNP1683 1 84.100 5,0E-05

SNP1614 1 80.650 SNP293 1 14.600 5,6E-05

Yield Deviation Yield Deviation

SNP6499 4 24.900 SNP6499 4 24.900 1,9E-19

SNP1683 1 84.100 SNP1682 1 84.050 4,2E-09

SNP6507 4 25.300 SNP1683 1 84.100 2,8E-08

SNP1614 1 80.650 SNP6498 4 24.850 2,7E-07

SNP6506 4 25.250 SNP6501 4 25.000 6,9E-07

SNP4674 3 33.650 SNP6506 4 25.250 3,3E-06

SNP1682 1 84.050 SNP293 1 14.600 9,2E-06

SNP9374 5 68.650 SNP6507 4 25.300 2,7E-05

SNP1012 1 50.550 SNP1699 1 84.900 5,1E-05

SNP1685 1 84.200 SNP1161 1 58.000 7,6E-05

Table 3 Top SNPs identified by the Random Forest and GRAMMAR-CG Approach for trait 2

Trait 2

Random Forest method Grammar_CG

Multiple Trait EBV Multiple Trait EBV

SNP name CHR pos Kb SNP name CHR Pos Kb p-value

SNP6499 4 24.900 SNP6499 4 24.900 1,93E-18

SNP7151 4 57.500 SNP293 1 14.600 3,51E-10

SNP298 1 14.850 SNP4044 3 2.150 6,38E-10

SNP2171 2 8.500 SNP298 1 14.850 4,07E-07

SNP293 1 14.600 SNP6501 4 25.000 1,79E-06

SNP9528 5 76.350 SNP6498 4 24.850 1,74E-05

SNP296 1 14.750 SNP296 1 14.750 8,60E-05

Single Trait EBV Single Trait EBV

SNP6499 4 24.900 SNP6499 4 24.900 1,93E-19

SNP7151 4 57.500 SNP293 1 14.600 1,74E-09

SNP2171 2 8.500 SNP4044 3 2.150 1,24E-08

SNP298 1 14.850 SNP298 1 14.850 1,12E-06

SNP293 1 14.600 SNP6501 4 25.000 1,17E-06

SNP9528 5 76.350 SNP6498 4 24.850 8,61E-06
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Table 3 Top SNPs identified by the Random Forest and GRAMMAR-CG Approach for trait 2 (Continued)

Yield Deviation Yield Deviation

SNP6499 4 24.900 SNP6499 4 24.900 2,90E-24

SNP293 1 14.600 SNP293 1 14.600 1,21E-11

SNP298 1 14.850 SNP6501 4 25.000 2,34E-08

SNP296 1 14.750 SNP298 1 14.850 4,93E-08

SNP6507 4 25.300 SNP6498 4 24.850 7,76E-08

SNP6506 4 25.250 SNP4044 3 2.150 3,19E-07

SNP6425 4 21.200 SNP296 1 14.750 1,58E-06

SNP9374 5 68.650 SNP6506 4 25.250 2,80E-06

SNP295 1 14.700 SNP295 1 14.700 3,81E-06

SNP7151 4 57.500 SNP6503 4 25.100 1,66E-05

SNP6507 4 25.300 2,37E-05

SNP6504 4 25.150 5,45E-05

SNP6502 4 25.050 8,14E-05

SNP9362 5 68.050 8,14E-05

Table 4 Top SNPs identified by the Random Forest and GRAMMAR-CG Approach for trait 3

Trait 3

Multiple Trait EBV Multiple Trait EBV

SNP name CHR Pos Kb SNP name CHR Pos Kb

SNP4738 3 36.850 SNP3585 2 79.200 1,54E-22

SNP3585 2 79.200 SNP4738 3 36.850 1,71E-14

SNP1683 1 84.100 SNP4044 3 2.150 1,52E-13

SNP3584 2 79.150 SNP1682 1 84.050 5,52E-13

SNP1291 1 64.500 SNP1683 1 84.100 7,06E-11

SNP1478 1 73.850 SNP3584 2 79.150 9,54E-11

SNP1682 1 84.050 SNP1699 1 84.900 8,86E-08

SNP1169 1 58.400 SNP1166 1 58.250 3,33E-06

Single Trait EBV Single Trait EBV

RanFoG Trait 3 ST GRAMMAR Trait 3 ST

SNP1683 1 84.100 SNP1682 1 84.050 7,61E-13

SNP4738 3 36.850 SNP1683 1 84.100 1,12E-12

SNP7012 4 50.550 SNP3585 2 79.200 1,36E-11

SNP1291 1 64.500 SNP4044 3 2.150 9,75E-09

SNP1169 1 58.400 SNP1699 1 84.900 2,41E-08

SNP1478 1 73.850 SNP1161 1 58.000 1,61E-07

SNP296 1 14.750 SNP4738 3 36.850 2,28E-06

SNP3585 2 79.200 SNP1178 1 58.850 1,43E-05

SNP4317 3 15.800 SNP4047 3 2.300 2,39E-05

SNP295 1 14.700 SNP3584 2 79.150 2,80E-05

Yield Deviation Yield Deviation

SNP1683 1 84.100 SNP1682 1 84.050 2,49E-19

SNP1682 1 84.050 SNP1683 1 84.100 2,09E-18

SNP4738 3 36.850 SNP3585 2 79.200 5,84E-15

SNP3585 2 79.200 SNP1699 1 84.900 3,29E-12

SNP295 1 14.700 SNP4044 3 2.150 3,88E-08

SNP1161 1 58.000 SNP1161 1 58.000 6,46E-08

SNP1169 1 58.400 SNP3584 2 79.150 8,54E-08

SNP296 1 14.750 SNP4738 3 36.850 2,30E-07

SNP278 1 13.850 SNP1166 1 58.250 1,86E-06
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position provided by [10]. Interestingly the exact mar-
kers flankingthe QTL were identified for all traits.
Differences however were observed depending on

i) the phenotype analysed, YD, single trait EBV and
Multiple trait EBV and on ii) the method used RF or
GRAMMAR-CG.
With regard to Trait 1, the GRAMMAR-CG method

identified 8 significant associations for multiple trait
EBV, 6 for single trait EBVs and 10 for YD, only 4 of
which are common between the three phenotypes. The
RF approach identified the same number of markers per
phenotype, but only 2 markers were in common
between the methods of analysis and phenotype. The
two markers identified by both approaches were the
QTL which explained the largest variance, however, the
other markers are all true associations and indicate that
using different types of phenotypes for the same trait
and different analysis methods may overlap, but may
also show some differences in QTLs and positions.
Traits 2 and 3 share the same pattern as observed for

trait 1. Several QTL were identified in common between
phenotypes and methods but just a few were in com-
mon between analysis methods: 2 markers for trait 2
and 3 markers for trait 3. When the YD phenotype was
used, a larger number of significant SNPs were detected.
This may be due to the larger variability of the YD com-
pared to the more regressed EBV phenotypes (Table 1).
Interestingly both methods failed to identify the QTLs

on chromosomes 4 and 5 for Trait 3. The variance
explained by the markers is low, suggesting that both
methods are not able to detect QTLs which explain a
small amount of variance. The RF approach, however,
detect the QTL on chromosomes 5 and 3 for Trait 1.
Overall the results of the RF were confirmed by the

results of the GRAMMAR-CG method and were vali-
dated by the effective positions given the QTL. Interest-
ingly, even though the RF approach does not directly
use family structure information through a relationship
matrix (genomic or additive), as is the case in the
GRAMMAR-CG approach, correct identification of
QTL positions is achieved.

Conclusions
In this study we proposed the use of recursive partition-
ing approaches such as Random Forest, as an alternative

to traditional regression methods to detect the genetic
loci. The results of the RF approach were consistent
with those of the GRAMMAR-CG method and validated
by the effective positions given for the QTL. However,
when the variance explained by the QTL was low, both
failed to detect a significant association.
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