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Abstract

We explore causal relationships between genotype, gene expression and phenotype in the Genetic Analysis
Workshop 19 data. We compare the use of structural equation modeling and a Bayesian unified framework
approach to infer the most likely causal models that gave rise to the data. Testing an exhaustive set of causal
relationships between each single-nucleotide polymorphism, gene expression probe, and phenotype would be
computationally infeasible, thus a filtering step is required. In addition to filtering based on pairwise associations,
we consider weighted gene correlation network analysis as a method of clustering genes with similar function into
a small number of modules. These modules capture the key functional mechanisms of genes while greatly
reducing the number of relationships to test for in causal modeling.
Background
Even though genome-wide association studies (GWAS)
have been very successful over the past decade at identi-
fying genetic variants associated with disease, the mech-
anism underlying these associations is generally not
known. It is hoped that gene expression data could pro-
vide the missing link between genotype and phenotype.
We are interested in exploring causal relationships be-
tween genotype data, gene expression data, and
phenotype.
There exist many techniques for causal analysis which

could be applied to the Genetic Analysis Workshop 19
(GAW19) data. We choose to focus on structural equa-
tion modeling (SEM) and a Bayesian unified framework
(BUF) approach [1]. For both of these methods, graph-
ical models provide a natural framework for describing
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causal relationships. Suppose we have data from a single
single-nucleotide polymorphism (SNP), gene expression
measurements from a single probe, and data on a
phenotype of interest. Some possible causal models are
illustrated in Fig. 1. In this framework, nodes represent
measured variables and the presence of a directed arrow
between two nodes implies a causal link.
In Fig. 1 causal scenario (a), the SNP affects both gene

expression (GE) and phenotype (PHEN) independently.
Scenario (b) represents the situation where the pheno-
type is indirectly influenced by the SNP through gene
expression. Conversely, in scenario (c), gene expression
is indirectly influenced by the SNP via the phenotype.
Scenarios (d) to (i) depict further possible causal scenar-
ios; the absence of an arrow between variables represents
the lack of a causal relationship.
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Fig. 1 Possible causal models a–i as described in the text. GE, gene expression; PHEN, phenotype. The absence of an arrow between variables
represents the lack of a causal relationship
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Methods
We performed quality control (QC) on the GAW19
GWAS (SNP) data [2] using standard procedures out-
lined in Anderson et al [3]. Individual level QC resulted
in 4 individuals being excluded as a result of no geno-
type data being available. A further individual was ex-
cluded because of outlying ethnicity. SNP level QC
removed 43,986 SNPs with low frequency (minor allele
frequency <1 %) and 109 SNPs with high rates of
missingness.
Gene expression measurements as described in Göring

et al [4] are available on 638 of the individuals for whom
we have GWAS data. For the causal analysis we decided
to focus on the real phenotypes systolic (SBP) and dia-
stolic blood pressure (DBP) and we only included indi-
viduals for whom we have both GWAS and gene
expression data. For each of the phenotypes, we adjusted
for covariates using linear regression and took the aver-
age of the residuals over the different time points within
an individual as our final phenotype. Covariates in the
models included age, medication status, smoking status,
and (for DBP) age squared. This replicates the analysis
performed by Eu-Ahsunthornwattana et al [5].

Filtering
Rather than conducting causal analysis for every possible
trio of SNP, gene expression, and phenotype measure-
ments, a filtering step was undertaken to identify poten-
tially interesting trios (see, eg, Liu et al [6] and Shin et al
[7]). First, association analysis was conducted to identify
gene expression probes that were correlated with the
phenotypes. This was done separately for SBP and DBP
using linear regression with the gene expression mea-
surements corrected for sex. For gene expression probes
that showed an association with phenotype, a genome-
wide association scan was carried out with gene expres-
sion as the phenotype. This analysis was carried out
using the Factored Spectrally Transformed Linear Mixed
Model (FaST-LMM) software [8], which models related-
ness between individuals as estimated through genome-
wide SNP data. SNPs that showed an association with
the gene expression probes were retained. The end result
of this filtering step is a significantly reduced number of
trios of SNP/gene expression/phenotype variables on
which to perform causal analysis.

Weighted gene correlation network analysis
An alternative to the above filtering step is to use the
weighted gene correlation network analysis (WGCNA)
approach [9], which allows us to group genes into a rela-
tively small number of modules (clusters). These mod-
ules contain sets of highly correlated genes based on
their gene expression measurements. Each module can
be summarized by an eigengene that can be taken for-
ward to be used in further analyses. This process is de-
scribed in Ghazalpour et al [10].

Causal modeling
Causal modeling was performed for all trios of SNP,
gene expression, and phenotype that remained following
filtering, using the 2 methods outlined below.

Structural equation modeling (SEM)
SEM is a regression-based approach to causal modeling.
A system of linear equations can be constructed based
on the relationships between nodes in the graphical
model. The parameters in the model can be estimated
using maximum likelihood and the fit of the model eval-
uated using appropriate statistical tests. When more
than 1 causal model is tested, the one with the lowest
Akaike information criterion (AIC) can be thought of as
representing the most plausible underlying causal
mechanism.
A selection of possible causal models which can be

tested in the SEM framework are depicted in Fig. 1.
Note that biologically implausible models (ie, any model
in which the SNP is causally affected by another vari-
able) have been omitted.

Bayesian unified framework (BUF)
The BUF [1] is a flexible approach that can be used for
univariable and multivariable testing. The approach has
its foundations in Bayesian model comparison and
model averaging. This approach partitions variables in



Table 1 Results of causal analysis using gene expression probes

SNP Preferred model

SNP name Chromosome (bp position) Gene expression probe Phenotype SEM BUF

rs9869956 3 (155164342) GI42661149 SBP (b) (b)

rs11709568 3 (155177333) GI42661149 SBP (b) (b)

rs6440993 3 (155180174) GI42661149 SBP (b) (b)

rs9829532 3 (155181831) GI42661149 SBP (b) (b)

rs7618495 3 (155184048) GI42661149 SBP (b) (a)

rs4680185 3 (155213002) GI42661149 SBP (b) (b)

rs822711 3 (165003805) GI42661149 SBP (b) (b)

rs4921240 5 (159327355) GI42661149 SBP (b) (b)

rs9640732 7 (78320848) GI42661149 SBP (b) (b)

rs13246026 7 (78331066) GI42661149 SBP (b) (b)

rs7793494 7 (78344389) GI42661149 SBP (b) (b)

rs11768116 7 (78345207) GI42661149 SBP (b) (b)

rs13242288 7 (78345298) GI42661149 SBP (b) (b)

rs7779874 7 (78346879) GI42661149 SBP (d) (b)

rs757395 7 (78356891) GI42661149 SBP (b) (f)

rs1888238 7 (78390300) GI42661149 SBP (b) (b)

rs13308578 7 (78408559) GI42661149 SBP (b) (b)

rs7038267 9 (4821348) GI42661149 SBP (d) (f)

rs34868670 5 (40237843) GI7706275 SBP (d) (a)

rs10246727 7 (152876977) GI7706275 SBP (b) (b)

rs2451078 13 (20098289) GI7706275 SBP (d) (a)

rs1570621 13 (47170118) GI7706275 SBP (d) (f)

rs4942556 13 (47174585) GI7706275 SBP (b) (b)

rs1105813 17 (7721542) GI7706275 SBP (d) (f)

Fig. 2 GWAS results using gene expression (left and center) or module eigengene (right) as phenotype
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the model into subsets γ ¼ U ;D; Ið Þ with respect to a
predictor variable, in our case the SNP. The variables in
U are unassociated with the SNP, the variables in D are
directly associated with the SNP and variables in I are
indirectly associated with the SNP. For each possible
partition, a Bayes’ factor is computed; the model with
the highest Bayes’ factor can be interpreted as the one
that best fits the data. For example, if the model with
the highest Bayes’ factor classifies gene expression as dir-
ectly associated with the SNP (D) and phenotype as in-
directly associated with the SNP (I) then this is
equivalent to model (b) in Fig. 1.

Results
The first filtering step identified 2 gene expression
probes that showed marginally significant correlation
(−log10 p value >5) with SBP. These were GI42661149,
for which no further information was given in the map
file, and GI7706275, which lies in the gene TPPP3 on
chromosome 16 at coordinates 67423801 bp to
67423850 bp. Two GWAS were performed using these
gene expression probes as the phenotype (Fig. 2). All
SNPs that showed marginal significance (−log10 p value
>5) with either gene expression probe (a total of 24
SNPs) were taken forward to be used in causal analysis.
Fig. 3 Results from WCGNA. Left: Dendrogram showing clustering of gene
between phenotypes and module eigengenes for different colored module
Table 1 shows the results of causal analysis. In 16
cases, both SEM and BUF agreed that the causal rela-
tionships should be classified as model (b). In the other
8 cases, SEM and BUF disagreed. For example, in 3 cases
the causal relationships were classed as model (d) by
SEM and as model (f ) by BUF. Model (d) represents the
scenario where gene expression is influenced independ-
ently by both SNP and phenotype, while model (f ) rep-
resents the scenario whereby gene expression is directly
associated with SNP and phenotype is unassociated with
SNP. Note that (d) is not currently tested for by BUF,
and (f ) is not tested for by SEM.

Weighted gene correlation network analysis method
The WGCNA package in R [9] was used to cluster gene
expression measurements into modules (typically identi-
fied by different colors). A total of 24 modules were iden-
tified; a dendrogram depicting the results of this
clustering can be viewed in Fig. 3 (left-hand plot). For each
module, the gene expression profile is summarized by a
module eigengene. The correlation between the module
eigengene and the phenotypes (SBP and DBP) was tested
for each module (Fig. 3, right-hand plot). There was 1
module/phenotype pairing (the tan colored module and
SBP) that was statistically significant (p value = 0.0002)
expression probes into different colored modules. Right: Correlation
s (with p values in parentheses)



Table 2 Results of causal analysis using WGCNA

Preferred model

SNP name Chromosome(bp position) Module eigengene Phenotype SEM BUF

rs9844757 3 (49343601) Tan SBP (b) (b)

rs34823813 3 (49749976) Tan SBP (b) (b)

rs1374678 3 (63083408) Tan SBP (b) (b)

rs2568532 15 (34387365) Tan SBP (b) (b)

rs12983427 19 (34307901) Tan SBP (b) (a)
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using a Bonferroni correction to set the appropriate
threshold to account for multiple testing.
A GWAS was performed using the tan module eigen-

gene as the phenotype (see right-hand plot of Fig. 2).
This returned 5 SNPs that showed modest significance
with the phenotype. These SNPs were taken forward to
be used in causal analysis and Table 2 shows the results.
As previously, in the majority of cases, both SEM and
BUF suggested that the inferred causal relationship
should be (b). There was also 1 case where SEM sug-
gested (b) and BUF suggested (a).
Discussion
Two methods for causal inference were implemented to
identify causal pathways between SNP, gene expression,
and phenotype. Attempting causal analysis without a
stringent filtering process would not be possible and
WGCNA provides a convenient tool in this process.
SEM and BUF were generally in agreement in their as-
sessment of the underlying causal model, although the
true underlying causal mechanisms are not known, so
these inferences cannot be validated. However, when
SEM and BUF disagreed, it must be noted that the dif-
ference in Bayes’ factors between competing models in
the BUF approach was very small.
SEM has the advantage of allowing models such as

model (d), whereby the phenotype affects gene expression
independently from the SNP, to be tested; in the BUF ap-
proach, this relationship is not routinely tested. Despite
this, the BUF approach is more flexible than SEM because
in BUF, an exhaustive set of partitions for variables is
automatically tested for; this could be especially useful if
there were a large number of variables in the model.
A direct comparison between filtering and WGCNA is

not straightforward; however, we note that there are no
overlapping gene expression probes between the tan mod-
ule and the probes obtained using filtering. WGCNA
takes approximately 1.5 hours to run and the tan module
eigengene accounts for 2.1 % of the variation in SBP.
However, filtering takes only a few minutes and the 2 gene
expression probes identified account for 3.6 % and 2.8 %,
respectively, of the variation in SBP.
For our purposes, both SEM and BUF are very quick
to perform, with both methods taking no more than a
couple of seconds. However, it must be noted that when
we consider the computational cost of our methods, we
are focusing on the very simple case where we have only
3 variables. Where many more variables are present, we
suggest more investigation is required to assess the scal-
ability of SEM, BUF and WGCNA.
We also considered performing causal analysis on the

simulated phenotypes in the GAW19 data set. However,
at the first filtering step we failed to recover any signifi-
cant associations between phenotype and gene expres-
sion probes located in genes that featured in the true
underlying simulation model. Consequently, we did not
proceed any further with causal analysis.

Conclusions
Two methods for causal inference were implemented to
identify causal pathways between SNP, gene expression,
and phenotype on the reduced number of trios. The
methods displayed reasonably good concordance with
the same causal model being identified the majority of
the time. Both methods were easy and quick to imple-
ment for the simple cases we considered in this analysis.
However, using these methods for an analysis with many
more variables would require careful thought.
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