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Abstract

Background: Expression quantitative trait locus (eQTL) maps are considered a valuable resource in studying
complex diseases. The availability of gene expression data from the Genetic Analysis Workshop 19 (GAW19)
provides a great opportunity to investigate the association of gene expression with genetic variants in blood.

Methods: A total of 267 samples with gene expression and whole genome sequencing data were employed in this
study. We used linear mixed models with genetic random effects along with a permutation procedure to create an
eQTL map. The eQTL map was further tested in terms of functional implication, including the enrichment in
disease-related variants and in regulatory regions.

Results: We identified 22,869 significant eQTLs from the GAW19 data set. These eQTLs were highly enriched with
genetic loci associated with blood pressure and DNase hypersensitive regions. In addition, the majority of genes
associated with eQTLs showed moderate to high heritability (h2 > 0.4).

Conclusions: We successfully created an eQTL map from the GAW19 data set. Our study indicated that the eQTLs
were enriched within regulatory regions, and tended to have relatively high heritability.
Background
Gene expression is an essential component of the central
dogma of molecular biology, and is mediated by both
genetic and environmental factors [1]. Expression quan-
titative trait loci (eQTLs) are genomic loci that regulate
gene expression. Previous studies have found that eQTLs
are enriched with disease-related variants uncovered by
genome-wide association studies (GWAS) [2], suggesting
that eQTLs might be a good resource to better under-
stand the functional implication of GWAS signals, and
uncover potential molecular mechanisms underlying
disease etiology. The availability of gene expression data
in the Genetic Analysis Workshop 19 (GAW19) pro-
vided us an opportunity to investigate the association of
gene expression with genetic variants identified through
whole genome sequencing [3].
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Methods
Data description
For each analysis we used real phenotype data from
individuals in the Type 2 Diabetes Genetic Exploration
by Next-generation sequencing in Ethnic Samples (T2D-
GENES) whole genome sequencing (WGS) families
provided by GAW19, which included systolic and dia-
stolic blood measurements, age, sex, and smoking status.
These measurements were quantified in four visits, and
data for at least one visit was available for 939 partici-
pants. A full description of the data can be found in
Almasy, et al. [4].
The genotype data was generated from WGS, which

included 12,296,048 single-nucleotide variants (SNVs)
on odd-numbered chromosomes found in at least one of
464 studied participants.
The gene expression profiled was previously described

in detail by Göring, et al. [5]. Briefly, peripheral blood
was collected from 1,240 individuals. However, only 267
samples also had their genotype profiled by WGS and
thus were chosen for our current study. The RNA was
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extracted from mononucleated cells, amplified, and then
hybridized to an Illumina Sentrix Human Whole Genome
(WG-6) microarray, which measured the expression
profiles of more than 20,000 transcripts. The expression
data were collected at the first visit, so we only use trait
data and covariates from that visit. Because only 34 indi-
viduals used blood pressure medication and we did not
expect different types of medication to have the same
effect on gene expression, we did not adjust for blood
pressure medication use.

Annotation
The functional annotation of genetic variants was per-
formed using the ANNOVAR (Annotate Variation) package
[6]. We defined putative cis-eQTLs as SNPs located within
1 Mb of the transcript starting sites, and trans-eQTLs as
SNPs located more than 1 Mb of the transcript starting
sites, or in different chromosomes.

Expression quantitative trait locus analysis
The association of genetic variants with gene expression
(eQTL) was tested by linear mixed effects models, adjust-
ing for random genetic effects and age, sex, smoking
status and the first two components from the expression
principal components analysis (Pc1, Pc2) as covariates.
Using the subscript ij to denote the jth individual in the ith

family, and defining Yij and SNPij as the gene expression
and genotype dosage, respectively, we write the model as:

Y ij ¼ βo þ β1ageij þ β2sexij þ β3smokingij þ β4Pc1ij

þβ5Pc2ij þ βs SNPij þ αij þ εij

where the betas denote the regression coefficients for
the fixed effects, αij is the random intercept, and εij the
normally distributed error term with mean zero and
variance σε

2. The αij within the ith family are normally
distributed with mean zero and covariance matrix σ2Φ,
where Φ is the kinship matrix. The overall covariance
matrix is block diagonal with one block per family. The
model was fitted in R using the lmekin function from
the coxme package [7]. The inclusion of the principal
components in the model is to account for batch effects.
Because of small sample size (N = 267), we had limited

power to uncover trans-eQTLs. In particular, with our
pedigree structure, assuming gene expression is fully
heritable, we have 30 % power to detect a common SNP
that would explain 0.2 of the variance at a significance
level of α = 1E − 8. Consequently, this study concentrated
on cis-eQTLs, which were defined as SNPs within 1 Mb
from the start or end of the transcript [8].
We ran a Shapiro-Wilk normality test for all the

expression probes and we found that the test was
significant after a Bonferroni correction for more than
half of the probes. To reduce type I error that may
arise from violating the normality assumption, we es-
timated significance using a modified version of the
permutation procedure proposed by Iturria, et al. [9]
that preserves familial correlation. First, we estimated
the heritability for each transcript and binned the
transcripts according to the estimated heritability. For
each transcript, we picked a surrogate from the same
heritability bin to represent the expected association
that we would have observed with a random tran-
script unassociated with the SNP of interest. We then
reordered the original transcript values according to the
ranking of the surrogate gene values. We reran the ana-
lysis with the permuted phenotype values and the putative
cis-eQTL for the original transcript. We repeated the
above procedure for each transcript three times to obtain
a p value between cis-eQTL and transcript.
To obtain the significant results we split the genes

into seven heritability bins. This splitting choice gave
an approximately equal number of permutations per
bin. To adjust for the different number of SNPs
tested (Ng) for each gene and account for linkage
disequilibrium, we multiplied the p values by the

factor Ngþ1
2 , which has been shown to be a good esti-

mate of the number of effective tests [10]. We used
the minimum adjusted p value from each permutation
to form a null distribution of the adjusted p value
statistic for each heritability bin.

Enrichment of eQTLs in disease-related variants and
regulatory regions
We took all the significant eQTLs and performed a Fisher’s
exact test to determine if the eQTLs were significantly
enriched with known genetic loci associated with blood
pressure. A total of 26 top SNPs were collected from the
literature. However, none of these SNPs were eQTLs found
in this study, either because they were not directly
sequenced, or because they were rare variants (minor allele
frequency (MAF) <5 %). Therefore, we extended this list to
nearby SNPs with distance less than 1 kb and
r2greater than 0.9. This extended list contained 31 SNPs
that were also eQTLs in our study.
We also examined if eQTLs were significantly

enriched within DNase hypersensitive regions based on
ENCODE data [11].

Results
Expression quantitative trait locus map
Here, we report significant expression SNPs (eSNPs)
controlling for a false discovery rate of 0.05 using the
Benjamini-Hochberg procedure [12]. We found 21,753
significant eSNPs that controlled the expression of
332 distinct Genes (eGenes); 985 eSNPs targeted
more than one eGene. Only one eGene has low



Table 2 Summary results by h2 bin

h2 eSNPs Genes tested SNPs per genes (mean)

0–0.1 4 451 3253

0.1–0.2 0 580 3111

0.2–0.3 0 800 3198

0.3–0.4 0 1145 3141

0.4–0.5 2232 1272 3210

0.5–0.6 350 1079 3123

0.6–1 20283 904 3177

The Author(s) BMC Proceedings 2016, 10(Suppl 7):31 Page 111 of 415
heritability (h2 < 0.1), and all the other eGenes have
medium to high heritability (h2 > 0.4). The ten most
significant eQTLs are shown in Table 1 and the
breakdown of the results by heritability bin is shown
in Table 2.

Enrichment of expression quantitative trait loci in blood
pressure–related variants
To demonstrate the usefulness of our eQTL map, we
examined the distribution of blood pressure–related
genetic variants from GWAS found in the literature.
Our variant list contained 31 SNPs that were a part of
the eQTL study, two of which were eSNPs. Even with
the small numbers, a Fisher’s exact test (p <6.1E-4)
showed that the set of GWAS results contained more
eSNPs than we would expect by chance.

Enrichment of expression quantitative trait loci in
regulatory regions
We found 386,135 variants that were part of the eQTL
analysis that lie within DNase hypersensitivity regions,
of which 5,679 were found to be eSNPs. Our results
confirmed the enrichment of eQTLs in DNase cluster
regions (Fisher’s exact test p value <2.2e-16), which
contained 17 times more eQTLs than random variants.

Association of gene expression with blood pressure
We then tested the association of gene expression with
blood pressure, and found that two probes were signifi-
cantly associated with blood pressure. One probe
(GI_7706275.A with p <5.5E-9) maps to the gene TPP3
on chromosome 16, while the other (GI_42661149 with
p <1.8E-6) maps to the predicted gene LOC400604.

Discussion
The identification of genetic mechanisms underlying
gene expression would enable a better understanding
Table 1 Top 10 eQTLs

Gene
symbol

Chr Pos Ref Alt Raw
p value

Adjusted
p value

UBA52 19 18668135 G C <1e-324 <1e-324

UTS2 1 7970383 T C <1e-324 <1e-324

CAPZA1 1 113138318 G A 1.9e-150 3.0e-147

TMEM176B 7 150478052 G T 1.9e-139 3.2e-136

TMEM176A 7 150460891 T G 1.7e-134 3.0e-131

RPL14 3 40498845 T C 3.3e-123 4.4e-120

TIMM10 11 57324428 G A 1.2e-120 1.9e-117

SPATA20 17 48624523 A C 1.8e-112 2.7e-109

SLC12A7 5 1104938 C T 4.0e-97 7.7e-94

RNF167 17 4848450 G A 1.1e-92 2.2e-89

RPS6KB2 11 67197757 G A 3.9e-90 2.9e-87
of the biology of complex diseases. We performed a
comprehensive analysis of the association between
gene expression and genetic variants using GAW19
data, and successfully identified 22,869 eQTLs despite
limited sample size. These eQTLs were highly
enriched in genetic loci associated with blood pres-
sure and DNase hypersensitive regions, suggesting
that eQTLs might play an important role in regula-
tory functions. Our breakdown of eSNP results by
heritability indicates that most of these eSNPs have
high heritability. Future investigation with a larger
sample size would further validate the association of
heritability with eQTLs.

Conclusions
We created an eQTL map that included 22,869 eQTLs
from GAW19 data. We found that eQTLs were enriched
within regulatory regions, and tended to have relatively
high heritability.

Acknowledgements
All the analyses were performed on the Boston University Shared
Computing Cluster.

Declarations
This article has been published as part of BMC Proceedings Volume 10
Supplement 7, 2016: Genetic Analysis Workshop 19: Sequence, Blood
Pressure and Expression Data. Summary articles. The full contents of the
supplement are available online at http://bmcproc.biomedcentral.com/
articles/supplements/volume-10-supplement-7. Publication of the
proceedings of Genetic Analysis Workshop 19 was supported by
National Institutes of Health grant R01 GM031575.

Authors’ contributions
ANP drafted the manuscript, ran enrichment analysis, and obtained the eQTL
analysis significant results. SHC performed the permutation based eQTL analysis
and edited the manuscript. JDH collected SNPs from the literature and edited
the manuscript. JH obtained the annotation information of genes and edited
the manuscript. HL conceived the study, oversaw the analyses, and edited the
manuscript. All authors approved the final version of the manuscript.

Competing interests
The authors declare they have no competing interests.

Author details
1National Heart Lung and Blood Institute’s Framingham Heart Study, 73 Mt.
Wayte Avenue, Suite 2, Framingham, MA 01702, USA. 2Department of
Biostatistics, Boston University School of Public Health, 677 Huntington
Avenue, Boston, MA 02115, USA. 3Program in Bioinformatics, Boston

http://bmcproc.biomedcentral.com/articles/supplements/volume-10-supplement-7
http://bmcproc.biomedcentral.com/articles/supplements/volume-10-supplement-7


The Author(s) BMC Proceedings 2016, 10(Suppl 7):31 Page 112 of 415
University, Boston, MA 02215, USA. 4Department of Medicine, Boston
University School of Medicine, 72 East Concord St, Boston, MA 02118, USA.

Published: 18 October 2016

References
1. Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, Fischer

J, Maatz H, Kren V, Pravenec M, et al. Heritability and tissue specificity
of expression quantitative trait loci. PLoS Genet. 2006;2(10), e172.

2. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-
associated SNPs are more likely to be eQTLs: annotation to enhance
discovery from GWAS. PLoS Genet. 2010;6(4), e1000888.

3. Li L, Kabesch M, Bouzigon E, Demenais F, Farrall M, Moffatt MF, Lin X,
Liang L. Using eQTL weights to improve power for genome-wide
association studies: a genetic study of childhood asthma. Front
Genet. 2013;4:103.

4. Blangero J, Teslovich TM, Sim X, Almeida MA, Jun G, Dyer TD, Johnson
M, Peralta JM, Manning AK, Wood AR, et al. Omics squared: Human
genomic, transcriptomic, and phenotypic data for Genetic Analysis
Workshop 19. BMC Proc. 2015;9 Suppl 8:S2.

5. Göring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett
JB, Abraham LJ, Rainwater DL, Comuzzie AG, et al. Discovery of expression
QTLs using large-scale transcriptional profiling in human lymphocytes. Nat
Genet. 2007;39(10):1208–16.

6. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids
Res. 2010;38(16), e164.

7. Therneau T. coxme: Mixed effects Cox models. R package version 2.3.
2012, https://cran.r-project.org/web/packages/coxme/index.html.

8. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang
B, Wang S, Suver C, et al. Mapping the genetic architecture of gene
expression in human liver. PLoS Biol. 2008;6(5), e107.

9. Iturria SJ, Williams JT, Almasy L, Dyer TD, Blangero J. An empirical test of the
significance of an observed quantitative trait locus effect that preserves
additive genetic variation. Genet Epidemiol. 1999;17 Suppl 1:S169–73.

10. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA,
Breslau N, Johnson EO, Hatsukami D, Pomerleau O, et al. Cholinergic
nicotinic receptor genes implicated in a nicotine dependence association
study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet.
2007;16(1):36–49.

11. ENCODE Project Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature. 2012;489(7414):57–74.

12. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Series B Stat
Methodol. 1995;57(1):289–300.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https://cran.r-project.org/web/packages/coxme/index.html

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data description
	Annotation
	Expression quantitative trait locus analysis
	Enrichment of eQTLs in disease-related variants and regulatory regions

	Results
	Expression quantitative trait locus map
	Enrichment of expression quantitative trait loci in blood pressure–related variants
	Enrichment of expression quantitative trait loci in regulatory regions
	Association of gene expression with blood pressure

	Discussion
	Conclusions
	Acknowledgements
	Declarations
	Authors’ contributions
	Competing interests
	Author details
	References

