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Abstract

Background: The main focus of the Genetic Analysis Workshop 19 (GAW19) is identification of genes related to the
occurrence of hypertension in the cohort of patients with type 2 diabetes mellitus (T2DM). The aim of our study
was to predict dynamics of the future hypertension incidence, based on gene expression profiles, systolic and
diastolic blood pressure changes in time, sex, baseline age, and cigarette smoking status.
We analyzed data made available to GAW19 participants, which included gene expression profiles of peripheral
blood mononuclear cells (PBMCs) from the diabetic members of 20 Mexican American families.

Methods: On the basis of mid blood pressure measurements at several time points, the coefficient of regression
(slope) was calculated for each individual. We corrected the slope value in patients treated with antihypertensive
medications. Feature preprocessing methods were used to remove highly correlated probes and linear dependencies
between them. Subsequently, multiple linear regression model was used to associate gene expression with the
regression coefficient calculated for each T2DM patient. Tenfold cross-validation was used to validate the model. We
used linear mixed effects model and kinship coefficients to account for the family structure. All calculations were
performed in R.

Results: This analysis allowed us to identify 6 well-annotated genes: RTP4, FXYD6, GDF11, IFNAR1, NOX3, and HLA-DQ2,
associated with dynamics of future hypertension incidence. Two of them, IFNAR1 and NOX3 were previously implicated
in pathogenesis of hypertension.

Conclusions: There is no obvious mechanism that links all detected genes with dynamics of hypertension incidence.
Identification of possible connection with hypertension needs further investigation.
Background
As a result of civilization factors, the incidence of hyper-
tension is increased [1]. Hypertension increases the risk
of many life-threatening medical conditions, including
stroke and myocardial infarction. This is especially
important for patients with various comorbidities which
lead to similar medical complications, which is the case
in patients with type 2 diabetes mellitus (T2DM) and
hypertension. Therefore, it should be useful to identify
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functional genes responsible for the development of
civilization diseases to predict also their progression in
time in human population studies [2–4]. Analysis of
gene expression may be helpful in this task [3, 5]. Since
1999, microarray-based gene expression analyses have
become one of the most popular technologies in tran-
scriptomics studies. Over the last 15 years, numerous
studies addressed the use of array expression profiling of
mononuclear cells from peripheral blood of patients
with various diseases. This great effort was conducted to
elucidate molecular background of diseases and simul-
taneously serve primary diagnosis, differential diagnosis,
subclassification, study therapy outcomes, as well as
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prognostic and predictive biomarkers [6]. One of the most
challenging issues in transcriptomics is to understand
complex diseases, such as hypertension, especially in com-
bination with T2DM. To understand the occurrence and
progression of hypertension it is important to understand
gene expression and their correlation with the disease [6].
In future, methods that simplify the evaluation of this
molecular signature will be required for routine use in
clinical decision making. The main assumption to conduct
this type of research is that a set of messenger RNA mole-
cules could indicate future health and/or a pathological
condition. In our study, we want to identify predictors of
dynamics of future hypertension incidence in patients
who already developed T2DM and are at increased risk of
cardiovascular complications.

Methods
The San Antonio Family Heart Study collected phenotype
data for 1371 patients and expression data were made
available to Genetic Analysis Workshop 19 (GAW19) par-
ticipants for 647 patients with T2DM [7]. Only 502
patients had both data sets available and were neither
hypertensive (systolic blood pressure <140 mmHg, dia-
stolic blood pressure <90 mmHg) nor taking antihyperten-
sive drugs at first visit. Blood was collected for gene
expression analysis at the time of first blood pressure
measurement. However, only 340 patients had also
between 1 and 4 additional blood pressure measurements
at various time points (1 to 19 years) after the first visit.
Among 340 T2DM patients included in our analysis,
220 remained normotensive throughout the duration of
the project, 38 were declared hypertensive based on
blood pressure measurements, and 82 were declared
hypertensive because they started to use antihyperten-
sive drugs (Table 1).
To model future hypertension using gene expression

data we applied linear model regression, multiple linear
model regression, linear mixed models using kinship
matrix, and K-fold cross-validation. All calculations were
performed using Rstudio with additional packages like
foreach, doParallel, plyr, reshape2, ggplot2, illuminaHu-
manv1.db, kinship2, Matrix, coxme, caret, FSelector. KING
Table 1 Characteristics of the study population

Subgroup 1st

Developed hypertension NoHTN

Medications NoBPM

Slope (median) 0.4138

Number (340) 220

Age (median & range) 27.16 (15.96–78.59)

MBP (median & range) 89.5 (66–110.5)

BPM blood pressure medication, HTN developed hypertension, MBP mid blood pres
developed hypertension
software was used to determine kinship coefficients from
available genotype data (variant call format [VCF] files).

Calculation strategy
First we performed data filtering to obtain 340 patients.
Then we calculated the regression coefficient (slope) for

each individual using linear regression with MBP (mid
blood pressure defined as [systolic blood pressure (SBP) +
diastolic blood pressure (DBP)]/2) as a dependent variable
and time of subsequent measurements as an independent
variable.
The group was divided as described above and we de-

termined the median MBP value for each group.
We adjusted slope of every patient from group 3 (see

Table 1) by adding a factor, which is the difference
between the medians of the second and third groups.

Features preprocessing
We removed highly correlated probes and linear depend-
encies between them to reduce the number of probes to
340. Then we used univariate screen of these probes, to
select probes which are associated with a slope at p <0.1,
using the caret package.
This procedure selected 20 probes with association of

expression at the level of p <0.1, which were used as pre-
dictors, together with age, cigarette smoking, and sex, in
a multiple linear regression model.
For the last step of calculations we used K cross-

validation for resampling of our model.
For the following step of calculations we used K cross-

validation for resampling of our model.
Finally, we calculated kinship coefficient for each pair

of individuals within families, using pedigree structure
(kinship2 package) or using available genotype data
(King software) and used kinship matrix in a linear
mixed effects model.
From the initial study group we selected 340 patients

without hypertension phenotype. Median values of the
MBP slopes were 0.41; 1.77; 0.65 for first, second, and
third group, respectively. Size of the consecutive groups
was 220, 38, and 82 cases for the first, second, and third
group, respectively.
2nd 3rd

HTN HTN

NoBPM BPM

1.7714 0.6546

38 82

36.34 (16.04–69.10) 42.97 (19.32–71.29)

96.25 (80–107.5) 97.00 (71–111)

sure, NoBPM no blood pressure medications, NoHTN no



Table 2 List of significantly associated genes after fitting linear
model

Numbera Probe number p value Gene name

1 GI_11545889.S 0.01759156 RTP4

2 GI_11612654.S 0.02029625 FXYD6

3 GI_10863872.S 0.02288918 NAb

4 GI_11641418.S 0.02806682 GDF11

5 GI_10835182.S 0.03843530 IFNAR1

6 GI_11136625.S 0.03981958 NOX3

7 GI_11095446.S 0.04552203 HLA-DQA2
aNumber of probes with a p value of less than 0.05
bNot applicable (NA)
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Results
Calculation of outcome variable
The first step was to calculate regression coefficient
(slope), which represents dynamics of progression to
hypertension. We used a linear regression model with mid
baseline blood pressure data (MBP defined as [SBP +
DBP]/2) as a dependent variable and measurement time
data as an independent variable. Then we divided study
group into 3 different phenotypes. First group consisted of
patients who did not develop hypertension (NoHTN) and
who do not take any blood pressure medications
(NoBPM); the second group consisted of patients who
developed hypertension (HTN) but are not treated for
HTN (NoBPM); and the third group consisted of pa-
tients with developed HTN who take blood pressure
medication (BPM). We determined median for each
group (see Table 1).

Discussion on the distribution mid blood pressure in each
group
We checked distribution of MBP within groups. Surpris-
ingly, MBP median value of the second and third groups
was significantly higher than that observed in the first
group (89.5; 96.25; and 97 mmHg for first, second, and
third groups, respectively). This means that T2DM
patients who later developed HTN, already had a tendency
to have higher blood pressure at baseline, although still
within the normal limits. However, based on these differ-
ences we could not provide a diagnostic test that supports
clinical decision making. We can see the trend, but to
create a clinically useful predictor we need a stronger
discriminator, such as a set of genes.
We assume that patients from a third group would

have a higher blood pressure at later measurements and,
in consequence, a higher regression coefficient (slope),
provided they do not take any medication. So, we
adjusted slope of every patient from group 3 by adding
the difference between median of the second and third
groups’ slopes.

Strategy to select gene expression probes to model
dynamics of hypertension
Use of more than 20,000 gene expression probes for
modeling the response in 340 subjects in the form of a
full model or univariate screen of probes does not pro-
vide a stable model. Therefore, we used feature prepro-
cessing capabilities implemented in caret package of R
to decrease the dimensionality of the data. First, we
removed probes with highly correlated expressions,
using as the cutoff point for probe removal correlations
above 0.75. Subsequently, we removed linear dependen-
cies between the probes. This resulted in reduction of
the number of the probes used for further modeling
from 20,634 – 340.
To construct the final model of dynamic progression
to HTN, starting with preprocessed 340 probes, we per-
formed a univariate screen of all probes with a linear
regression model (lm function of R) against the slope.
We included in the final model all probes with a p value
of association of less than 0.1. We also forced into the
model environmental covariates: age at the time of first
examination, sex, and smoking status. The first predictor
variable is age at the time of the first blood pressure
measurements, which is identical to the time of blood
drawing for gene expression analysis. As expected, the
age was substantially higher in the second and third
groups, in agreement with the tendency of pressure
increase with age (median value 27.16; 36.34; 42.97 for
first, second, and third groups, respectively). The next
predictors are cigarette smoking and sex, included in the
model as recorded during the first visit.
Fitting of these models to perform a univariate screen

of all probes, results in selection of 20 probes associ-
ated with dynamics of HTN development at p value of
less than 0.1. Together with 3 environmental variables,
the final model includes 23 variables. The multiple R2
for this model is 0.2106, adjusted R2 is 0.1532 with a p
value of 9.11 × 10−8. Seven probes were significantly
associated with the slope, these include probes for the
following genes: RTP4, FXYD6, GDF11, IFNAR1,
NOX3, and HLA-DQA2, as well as 1 probe with lack of
annotation (Table 2).

Validation of the model
We validated this model using 10-fold cross-validation.
R2 of the cross-validated full model was 0.1459.

Testing for the possible family effects
We calculated kinship coefficients for each pair of individ-
uals within the families. Kinship coefficients were calculated
in 1 of 2 ways: either using provided pedigree structure
(kinship2 package of R) or using genotype data (KING: kin-
ship based inference for GWAS [genome-wide association
studies]). Genotype data were available for 200 individuals
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from our data set. Kinship coefficients calculated with these
2 approaches were nearly identical. No misparenting
events, sample mixup, or hidden family structure were de-
tected (data not shown). To avoid decrease in our sample
size, we used kinship coefficients calculated from pedigree
structure in all further analyses.
To incorporate kinship coefficients in the linear mixed

effects model we used the coxme package of R with a
function lmekin. No random effects of family structure
were associated with the slope in this model (Table 3).

Discussion
We performed our analysis so as to identify genes whose
expression can predict the dynamics of future HTN inci-
dence in T2DM patients. We identified 6 well-annotated
genes (RTP4, FXYD6, GDF11, IFNAR1, NOX3, and HLA-
DQ2) and 1 probe that does not correspond to any gene,
which fulfill that criterion and remain significantly associ-
ated with our outcome after cross-validation.
However, we have to stress that the data set provided

for analysis has several limitations. Analysis of gene
expression has shifted in the past few years from micro-
arrays to next-generation sequencing of RNA. New
methods provide better dynamic range and allow the
finding of unexpected transcripts. Even the type of
microarrays used in this study is suboptimal; exon
microarrays could allow us to discriminate between
alternative transcripts, which may play an important role
in development of HTN.
The study group is not very big by current standards.

Nowadays, microarray experiments involve often tens of
thousands of subjects. Taken together, the power to
identify true associations of gene expression with HTN,
if they exist at all, is diminished. The environmental data
are quite scarce, too - only age at baseline, smoking sta-
tus, and sex are available. This group of patients is prob-
ably quite heterogenous. We have no information about
age of onset of diabetes, duration of diabetes, current
body mass index, glycemic control, or pharmacotherapy
Table 3 List of significantly associated genes after fitting linear
mixed effects model using a kinship matrix

Numbera Probe number p value Gene name

1 GI_11545889.S 0.01788168 RTP4

2 GI_11612654.S 0.01858857 FXYD6

3 GI_10863872.S 0.02286732 NAb

4 GI_11641418.S 0.02691985 GDF11

5 GI_11136625.S 0.03940994 NOX3

6 GI_10835182.S 0.04374117 IFNAR1

7 GI_11095446.S 0.04893729 HLA-DQA2
aNumber of probes with a p value of less than 0.05
bNot applicable (NA)
at baseline and its changes during the study. We can, for
example, imagine how profound an impact on gene
expression insulin therapy and dose used may have.
Another open question is whether peripheral blood

mononuclear cells (PBMCs) are an adequate source of in-
formation in this context. Maybe a liver, adipose tissue,
muscle or pancreatic biopsy, being closer to the pathogen-
esis of diabetes, could be a better source of information
than PBMCs? Possibly a renal tissue would be more in-
formative for HTN? Unfortunately, these tissue fragments
are very hard to obtain. On the other hand, mononuclear
cells are involved in the development of inflammation,
which is one of the causal pathways of HTN. Nevertheless,
this data set provides an interesting opportunity to check
the modeling strategy in prediction of the events distant
in time.
We decided to construct the outcome variable that

captured scattered-in-time information about blood
pressure measurements. The slope of blood pressure
changes allows us to deal efficiently with the situation
in which time of consecutive patient visits and blood
pressure changes was quite irregular. Our concern was
that the slope of blood pressure changes was rather flat
among patients identified as hypertensive based on an-
tihypertensive treatment they used - quite efficiently for
the majority of them, as the data show. We decided
that the best available correction would be to adjust
their slope by a factor seen in patients identified as
hypertensive based on their blood pressure.
Another difficulty we encountered was a large number

of features (more than 20,000) to be analyzed with a rather
modest number of subjects (only 340). To avoid instability
of the model created in such a situation, we implemented
feature reduction techniques, which reduced the number
of probes to several hundred. We removed highly corre-
lated probes. The univariate screen provided us with a list
of 20 probes, 6 of which were significantly associated with
the slope and remained significant after 10-fold cross-
validation. Linear mixed model, with family structure as a
random effect, showed that no family membership is a
significant factor for this dynamics.
We could not explain the potential association of all

found genes with dynamics of HTN incidence. Interest-
ingly, however, 2 of these genes were previously associated
with HTN in the available literature. NOX3 is one of the
isoforms of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, an enzyme-producing reactive oxygen
species associated with renal function and a risk of
diabetic nephropathy and HTN in Africans [8]. Recently,
type I interferon, which mediates its effects through
interferon-alpha receptor-1 gene (IFNAR1) was implicated
in pulmonary HTN [9]. It is not known whether this gene
may also have a role in systemic HTN, especially in
diabetic patients.
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These results encourage us to claim that gene expression
data generated from PBMCs may be with careful modeling
strategy associated with events distant in time.

Conclusions
We think that our model is useful for analyzing combined
transcriptomic and genomic data in complex diseases
such as asthma, allergies, cancer, and obesity. Our strategy
demonstrates using a modest-size phenotypic dataset to
find associations with gene expression. We used a slope
(regression coefficient) as an unbiased proxy for the blood
pressure changes during development of the complex trait
like hypertension. Apart from environmental factors,
which are still the biggest causative agent of hypertension,
we found genes that might be useful in predicting the
progression of this disease.
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