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Abstract

Current findings from genetic studies of complex human traits often do not explain a large proportion of the
estimated variation of these traits due to genetic factors. This could be, in part, due to overly stringent significance
thresholds in traditional statistical methods, such as linear and logistic regression. Machine learning methods, such
as Random Forests (RF), are an alternative approach to identify potentially interesting variants. One major issue with
these methods is that there is no clear way to distinguish between probable true hits and noise variables based on
the importance metric calculated. To this end, we are developing a method called the Relative Recurrency Variable
Importance Metric (r2VIM), a RF-based variable selection method. Here, we apply r2VIM to the unrelated Genetic
Analysis Workshop 19 data with simulated systolic blood pressure as the phenotype. We compare the number of
“true” functional variants identified by r2VIM with those identified by linear regression analyses that use a Bonferroni
correction to calculate a significance threshold. Our results show that r2VIM performed comparably to linear regression.
Our findings are proof-of-concept for r2VIM, as it identifies a similar number of functional and nonfunctional variants as
a more commonly used technique when the optimal importance score threshold is used.
Background
Technology advances now allow high-throughput genetic
data to be generated with ever-improving speed and
affordability. One major bottleneck in utilizing this data is
the development of bioinformatics tools that can identify
true signals amongst the high level of noise. Since the rise
in popularity of the genome-wide association study
(GWAS) over a decade ago, thousands of variants have
been identified that are associated with complex human
traits, including pharmacological outcomes [1]. However,
a large portion of the estimated heritability remains unex-
plained for many traits [2]. Machine learning methods are
promising candidates to address this issue and are
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currently used in other scientific fields, including drug
design [3].
One type of machine learning method is Random

Forests (RF) [4]. A caveat to RF is that there is no standard
method for selecting a set of variants with low levels of
false positives while retaining adequate power. More
commonly used parametric analyses, such as linear or
logistic regression, produce statistics with generally
accepted values for null error rates. However, due to
factors such as multiple testing correction and corre-
lated variables, these parametric thresholds may be too
stringent and could result in a large number of false
negatives. One way to obtain null error rates for machine
methods is to generate empirical distributions by running
thousands of permutation analyses. This is computation-
ally impractical for genome-wide studies. We propose a
more efficient method, which integrates different selection
parameters to identify the appropriate threshold between
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signal and noise called the Relative Recurrency Variable
Importance Metric (r2VIM). The ultimate goal of our
project is to generate variant sets and prediction models
to further our understanding and prediction of complex
traits.

Methods
Variable selection
RF is a machine learning method that grows a collec-
tion of decision or regression trees to identify variables
(e.g., single-nucleotide polymorphisms) that are associ-
ated with an outcome (e.g., blood pressure) while taking
into account main and interaction effects. RF output is
a ranked list of variables according to an importance
score. Importance is calculated as the percent change in
mean squared error after variable permutation. There is
no standard method of selecting an importance score
threshold that separates signal from noise. To this end,
we incorporate and extend upon a previously proposed
threshold selection method [5, 6]. Specifically, r2VIM
combines 3 different variable selection components, as
described below [6].
Fig. 1 Results for the linear regression analysis of the simulated SBP phenotyp
represents the variant index, which is in order of genome location. The y-axis
variant (left) and variants in functional genes (right)
1. Permutation-based importance score: The raw
variable importance metric (VIM) is calculated as
the percent change in mean squared error (MSE)
before and after random variable permutation.

2. Estimate of null variance: If no variables are
associated with the trait, the VIMs should be
symmetrically and randomly distributed around
zero. In practice, the lowest VIM is usually negative.
Thus, we use the absolute value of the lowest
VIM as an estimate of the null variance [5, 6].
This estimate can be used as a threshold by
selecting only those variables with VIMs greater
than the null variance. In previous studies, we
observed that this estimate alone may be too
liberal for genome-wide data. To address this,
we multiply the estimate by factors, or integers, to
create more stringent thresholds [6]. For example,
if the lowest VIM was-0.05, the null variance
estimate would be 0.05. For more stringent
thresholds, we could multiply by factors 2, 3,
and 4 to get new thresholds of 0.10, 0.15, and
0.20, respectively.
e for 2 p value thresholds (p <0.05 and p <5 × 10−7). The x-axis
shows the − log10(p value). The variants in red indicate functional



Table 1 Counts for the number of variants selected at different
thresholds for linear regression (p value) and r2VIM (min.RIS)

Method Threshold All (~350 k) Func. vars. (1047) Func. genes (4328)

Linear
Regression

p <0.05 7739 35 136

p <5 × 10−7 59 6 9

r2VIM min.RIS >0 340 6 9

min.RIS >0.5 37 5 8

min.RIS >1 25 5 8

The total number selected, the number of variants simulated directly to be
functional, and the number of variants in the functional genes are shown
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3. Recurrency: Due to the inherent randomness of
machines, variables that are deemed important in
one run may disappear in a second run with a
different random seed. Variables with high importance
scores across runs are more likely to be true signals.
Fig. 2 Results for the r2VIM analysis of the simulated SBP phenotype for 3
the variant index, which is in order of genome location. The y-axis shows t
variants in functional genes (right)
In r2VIM, we run RF 5 to 10 times and select
variables greater than the threshold factor from
variable selection component (2) across runs.

For this analysis, we ran the above selection algorithm
using RF on one of the simulated data sets for the sys-
tolic blood pressure (SBP) and Q1 (permuted) traits. We
used the parallelizable Random Jungle (RJ) software to
allow for the large number of input variables [7]. We ran
RJ with regression trees (numeric inputs and outputs),
60,000 variables sampled at each node (mtry), and 4000
trees in the forest (ntree). These parameters were se-
lected after testing several mtry/ntree combinations and
selecting the one with the lowest prediction error. The
analysis took a total of 5 h (1 h for each run). Each
analysis was run using 64 cores (approximately 63 trees
per node). Along with the genetic variants, we included
min.RIS thresholds (RIS <0, RIS <0.5, and RIS <1). The x-axis represents
he min.RIS. The variants in red indicate functional variant (left) and
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sex, blood pressure medication, smoking status, and the
top ten principal components (PCs) in the RJ analysis.
Age was not included because of missingness (18/1937
with no age given). We calculated the variable relative im-
portance score (RIS) for each run as VIM/abs(min. VIM).
This allows us to compare scores across runs. We com-
bined the RIS values over the 5 runs by selecting the mini-
mum value. This is considered “recurrency-corrected.”
We analyzed the same data set using linear regression.

The model included main effect terms for the variant,
blood pressure medication, smoking status, sex, age, and
the top 10 PCs. Age was included in the linear regres-
sion analysis, as the inability to handle missingness is a
weakness of r2VIM. Incorrect results would represent
this weakness and be a fair comparison of the 2 methods.
A Bonferroni correction on the p value for the variant
term was used as the selection threshold. We compared
the selected variants for the 2 methods based on the simu-
lated disease model for this data.

Data set
We used the Genetic Analysis Workshop 19 (GAW19)
simulated SBP and Q1 phenotype data for 1937 unre-
lated individuals [8]. For both we used data set replicate
Fig. 3 Comparison of the min.RIS score from the r2VIM analysis (y-axis) and
SBP phenotype. The variants in red indicate functional variant (top) and var
numbered 100. The genetic data was generated using
whole exome sequencing. Singletons and variants with
any missingness were removed leaving 353,103 total
variants. In the filtered set, 1047 variants were directly
simulated to be functional, and 4328 variants are in
genes with simulated functional variants. The functional
variants had a wide range of effect sizes and minor allele
frequencies, as described by the Genetic Analysis Work-
shop data contributors. This data set has previously
undergone several quality filtering steps; however, an in-
dependent quality control analysis identified more sam-
ples that did not meet certain data quality requirements.
A sibpair was identified by identity-by-descent (IBD) esti-
mation analysis. The member of the pair with lower over-
all coverage and higher missingness rate was dropped. We
also dropped 3 samples with 10× coverage of less than 0.7,
1 sample with missingness greater than 0.05, and 1 sample
that was a clear outlier for the number of singletons. After
these 5 samples were dropped, a PCs analysis was com-
pleted. The top 10 PCs were added as covariates into the
linear regression model and were included as variables in
the r2VIM analysis. The genetic data set is formatted as a
standard PLINK binary input with genotypes coded as 0/
1/2 indicating the number of alternative alleles present.
the − log10(p value) for the linear regression analysis of the simulated
iants in functional genes (bottom)
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Results
We ran r2VIM and linear regression on the GAW19
SBP simulated phenotype. Figure 1 shows the results for
the linear regression analysis of SBP. Each row repre-
sents a different p value selection threshold: p <0.05 and
p <5 × 10−7 (Bonferroni corrected). All of the variants
selected at the given thresholds are shown in black
(not simulated to be functional) and red (functional).
The left column shows the functional variants as red,
and the right column shows the variants in functional
genes as red. The counts for the selected variants are
shown in Table 1. Figure 2 shows the results for the
r2VIM analysis. Here we show the selected variants at
3 minimum RIS thresholds: min.RIS <0, min.RIS <0.5, and
min.RIS <1. The counts for the total functional versus
nonfunctional variants selected are shown in Table 1.
Next, we assessed the correlation between the p

values and the minimum RIS scores for linear regres-
sion and r2VIM, respectively (Fig. 3). These graphs sug-
gest agreement between the scores. It does not appear
that functional variants were identified as having strong
signals in one method and not the other. Of note, vari-
ants in black are not necessarily nonfunctional, as they
could still be in linkage disequilibrium with a func-
tional variant but not in the same gene. This makes it
difficult to do a reliable true-positive versus false-
positive assessment.
Fig. 4 Results for the r2VIM analysis of the simulated Q1 phenotype. The x-axis
axis shows the min.RIS. The variants in red indicate functional variant (left) and v
Finally, we ran r2VIM using the Q1 phenotype
(Fig. 4). This phenotype was not simulated to be corre-
lated with any of the variants. Therefore, any positive
associations should represent false-positive selection.
None of the variants were significant after Bonferroni
correction for the linear regression analysis of the Q1
data set (results not shown). Variants simulated to
be functional in the SBP phenotype model are shown
in red. Certain variants in this model have high
min.RIS scores; however, this could be an artifact of
the simulation method and further testing needs to
be done.

Discussion
For this GAW19 data set, linear regression and r2VIM had
similar true-positive and false-positive selection counts
when a Bonferroni corrected p value and a minimum RIS
score of 0.5 were used as thresholds. Both methods
identified the 2 genes with the strongest simulated ef-
fects, as shown by the 2 highest peaks in Figs. 1 and 2.
Although a key motivation for r2VIM development is the
identification of more complex models (e.g., interactions
with small main effects), this is an important proof-of-
concept for main-effect-only selection, as these are likely
to be present along with interaction effects. Notably,
neither method identified a large proportion of the
functional variants. Both appeared to have an effect
represents the variant index, which is in order of genome location. The y-
ariants in functional genes (right) from the SBP phenotype simulated model
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size/allele frequency threshold that resulted in no
power for selection. Future r2VIM testing will be done
using techniques to boost power for variants, such as
binning by functional region.
There are several major limitations of RF (and, there-

fore, r2VIM) including the inability to handle any data
missingness. In this analysis, we dropped variants with
missing data points. Imputation is another option; how-
ever, it is often time-consuming and can result in many
variants with unreliable calls. Future work will be done
on the best and most efficient way to impute genotypes
for r2VIM analysis to balance data gain with data quality.
Another current limitation is the amount of computa-
tional power required to run RJ on large data sets. This
analysis required a large number of high-memory pro-
cessors. Future work will be done on ways to improve
memory consumption. Finally, the best way to select
the RIS threshold is still not clear. Here we showed 3
different thresholds and selected the best one according to
the simulated model. This threshold selection process
would not be possible in a biological data set where the
underlying model is unknown. However, the optimal
threshold is going to be dependent on the underlying
model and will be different for different data sets. To
this end, we plan on incorporating a “null distribution”
analysis, by permuting the phenotype and running
r2VIM a computationally feasible number of times. By
comparing this distribution to the alternate, we may
be able to determine a more regimented threshold
selection process.
Conclusions
For this analysis, we were able to show that r2VIM is a
promising candidate for variable selection, as it per-
forms as well as the more commonly used linear re-
gression method for the identification of main effects.
Power to detect causal variants was low as expected
given the simulated model, but false positive rates were
similar between linear regression and RF for the SBP
trait. Perhaps the most important model to simulate
will be one that contains main and interactions effects,
as true biology is likely to contain both. The final goal
is to generate predictive models that allow for all types
of effects, which would require a method robust to
more than just main effects. With these models, we will
be able to gain deeper insight into the true etiology of
complex human disease.
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