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Abstract

Several statistical group-based approaches have been proposed to detect effects of variation within a gene for each
of the population- and family-based designs. However, unified tests to combine gene-phenotype associations
obtained from these 2 study designs are not yet well established. In this study, we investigated the efficient
combination of population-based and family-based sequencing data to evaluate best practices using the Genetic
Analysis Workshop 19 (GAW19) data set. Because one design employed whole genome sequencing and the
other whole exome sequencing, we examined variants overlapping both data sets. We used the family-based
sequence kernel association test (famSKAT) to analyze the family- and population-based data sets separately
as well as with a combined data set. These were compared against meta-analysis. Using the combined data,
we showed that famSKAT has high power to detect associations between diastolic and/or systolic blood pressures and
the genes that have causal variants with large effect sizes, such as MAP4, TNN, and CGN. However, when there was a
considerable difference in the powers between family- and population-based data, famSKAT with the combined data
had lower power than that from the population-based data alone. The famSKAT test statistic for the combined data
can be influenced by sample imbalance from the 2 designs. This underscores the importance of foresight in study
design as, in this situation, the greatly lower sample size in the family-based data essentially serves to dilute signal. We
observed inflated type I errors in our simulation study, largely when using population-based data, which might be a
result of principal components failing to completely account for population admixture in this cohort.
Background
Whole genome and whole exome sequencing studies
provide the resolution necessary to identify both com-
mon and rare genetic variants associated with com-
plex disease phenotypes. It is well known, however,
that single-variant tests are underpowered for rare
variants, and several group-based approaches have
been proposed to address this [1–3]. In addition to
combining association signals across a genetic region/
group (eg, a gene), it is often necessary to combine
these signals across, sometimes disparate, data sets.
This is frequently done via meta-analysis where sum-
mary statistics are calculated within each data set and
aggregated to conduct inference [4]. An alternative is
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mega-analysis [5, 6] where raw data are shared be-
tween studies. To conduct mega-analysis, the statis-
tical framework for each study must be the same,
which poses difficulty when some component studies
are family-based and others recruit only unrelated in-
dividuals. There is currently no consensus on which
approach is superior, and the comparison most likely
depends to a large degree on the specific setting and
various unknowns such as the study-specific genetic
architectures.
A popular test for conducting region-based associ-

ation testing, the sequence kernel association test
(SKAT) [7, 8], was recently extended to handle family-
based studies. The family-based SKAT (famSKAT) [9]
introduces a random effect for family that incorporates
familial relatedness and can be used robustly across
study designs. Because it is unknown how to best
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Table 1 The number of variants in each gene in family-based,
population-based, and combined data sets
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combine across study designs in this context, we ex-
plore here various approaches with the flexible famS-
KAT test and meta-analysis. Using the Genetic
Analysis Workshop 19 (GAW19) simulation data, we
investigate the combination of population-based (ie,
unrelated subjects only) and family-based studies via
famSKAT and meta-analysis to evaluate best practices
when both data types are available for a particular
phenotype of interest.
Gene Number of variants Number of causal variants

Totala Familyb Populationc Combinedd

DBP

MAP4 41 5 8 8

TNN 52 11 15 15

NRF1 17 0 0 0

LEPR 43 3 7 7

FLT3 46 1 2 2

ZFP37 18 1 5 5

CGN 56 9 16 16

MTRR 62 6 10 10

SLC35E2 29 0 0 0

ZNF443 20 1 5 5

RAI1 55 3 7 7
Methods
Data sets
Population-based genotype data
Exome sequencing data from part of the Type 2
Diabetes Genetic Exploration by Next-generation se-
quencing in Ethnic Samples (T2D-GENES) Project 1
were provided for GAW19. The data set includes vari-
ant call format (VCF) files for odd-numbered chromo-
somes from 1943 Hispanic people consisting of 490
from the San Antonio Family Heart Study, San Antonio
Family Diabetes/Gallbladder Study, Veterans Administra-
tion Genetic Epidemiology Study, and the Investigation of
Nephropathy and Diabetes Study family component, and
1453 in Starr County, Texas.
PTTG1IP 47 0 0 0

CABP2 37 1 0 1

ZNF544 34 3 3 3

REPIN1 32 3 4 4

SBP

MAP4 41 5 9 9

TNN 52 12 15 15

NRF1 17 0 0 0
Family-based genotype data
Whole genome sequencing data were provided by T2D-
GENES Project 2: San Antonio Mexican American Fam-
ily Studies. As with the population-based genotype data,
this data set includes VCF files for odd-numbered chro-
mosomes from 464 sequenced individuals comprising 16
distinct pedigrees.
LEPR 43 3 7 7

FLT3 46 1 2 2

ZNF443 20 1 5 5

CABP2 37 1 0 1

GTF2IRD1 34 0 0 0

FLNB 81 5 7 7

GSN 39 2 7 7

LRP8 35 1 2 2

PSMD5 33 2 4 4

GAB2 77 1 2 2

ABTB1 42 1 1 1

KRTAD11-1 4 0 0 0
aThe number of variants that have the same position between the family- and
population-based data
bThe number of causal variants of the intersected variants in the
family-based data
cThe number of causal variants of the intersected variants in the
population-based data
dThe number of causal variants of the intersected variants in the combined
data between the family- and population-based data
Phenotype data and covariates
We evaluated diastolic (DBP) and systolic blood pres-
sure (SBP) from the first examination using the 200
family- and population-based simulation replicates.
We performed principal component analysis (PCA)
[10] to detect outliers for each data set, and excluded
1 subject from the population-based cohort and 4
subjects from the family-based cohort. After removing
subjects with missing data (81 missing age in the
population-based cohort and 69 subjects with incomplete
data in the family-based cohort), we analyzed 2252 sub-
jects (1861 in the population-based and 391 in the family-
based data sets). We then reran the PCA for each analysis
type (ie, for the population-based only, the family-based
only, and the combined). We used age, gender, hyper-
tension medication use, the interaction between age
and gender, and the top 3 principal components
(PCs) as covariates throughout.
Statistical analysis
Because the variants in each data set varied, we ex-
tracted a data set of intersecting variants based on
marker position. VCFtools v0.1.12 [11] was used to
obtain biallelic single nucleotide variants (SNVs) from
each investigated gene. P values for the famSKAT
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tests were calculated by Kuonen’s method [12] with
the R package famSKAT (https://www.hsph.harvard.
edu/han-chen/2014/07/31/famskat/). We performed
famSKAT for analyzing the family- and population-based
data sets separately, as well as for the combined data set.
We further combined the famSKAT analyses from popula-
tion- and family-based designs meta-analytically [13] as
implemented in R’s seqMeta package [14]. We used the

default weights in famSKAT such that
ffiffiffiffiffi

wj
p

follows Beta

dMAFj; 1; 25
� �

with the sample minor allele frequency

dMAFð Þ estimated using all subjects.
Results
Simulated data
We focused on the top 15 causal genes influencing each
of DBP and SBP in the family data set. Variants within
50 kb upstream and downstream of each gene were ex-
tracted. Table 1 shows the number of variants in each
gene used in the analysis for each of the data sets. We
used the 200 simulated phenotype replicates to assess
empirical type I error rates and powers.
Table 2 Type I errors (95 % confidence intervals) of family-based seq
based, and the combined data, and of meta-analytic approach

Gene Family Population

MAP4 0.050 (0.024–0.090) 0.100 (0.062–0.1

TNN 0.030 (0.011–0.064) 0.080 (0.046–0.1

NRF1 0.050 (0.024–0.090) 0.070 (0.039–0.1

LEPR 0.040 (0.017–0.077) 0.045 (0.021–0.0

FLT3 0.090 (0.054–0.139) 0.060 (0.031–0.1

ZFP37 0.045 (0.021–0.084) 0.045 (0.021–0.0

CGN 0.040 (0.017–0.077) 0.060 (0.031–0.1

MTRR 0.035 (0.014–0.071) 0.030 (0.011–0.0

SLC35E2 0.085 (0.050–0.133) 0.065 (0.035–0.1

ZNF443 0.075 (0.043–0.121) 0.060 (0.031–0.1

RAI1 0.035 (0.014–0.071) 0.090 (0.054–0.1

PTTG1IP 0.070 (0.039–0.115) 0.080 (0.046–0.1

CABP2 0.055 (0.028–0.096) 0.090 (0.054–0.1

ZNF544 0.045 (0.021–0.084) 0.080 (0.046–0.1

REPIN1 0.065 (0.035–0.109) 0.050 (0.024–0.0

GTF2IRD1 0.080 (0.046–0.127) 0.075 (0.043–0.1

FLNB 0.050 (0.024–0.090) 0.070 (0.039–0.1

GSN 0.065 (0.035–0.109) 0.055 (0.028–0.0

LRP8 0.065 (0.035–0.109) 0.050 (0.024–0.0

PSMD5 0.025 (0.008–0.057) 0.080 (0.046–0.1

GAB2 0.030 (0.011–0.064) 0.065 (0.035–0.1

ABTB1 0.075 (0.043–0.121) 0.075 (0.043–0.1

KRTAD11-1 0.070 (0.039–0.115) 0.055 (0.028–0.0
Type I error simulation
To investigate type I error (false-positive) rates, we used
variable Q1, which is a heritable quantitative trait without
any direct association with genotype. Table 2 shows the
empirical type I error rates from the family-based,
population-based, and combined data sets, as well as that
from aggregating family and population results via meta-
analysis. For the family- and population-based designs, the
empirical type I error rates were acceptable, ranging from
0.025 to 0.090 and 0.030 to 0.100, respectively. The famS-
KAT for the combined data and the meta-analytic ap-
proach exhibited more inflated type I error rates: 0.050 to
0.135 and 0.055 to 0.130, respectively.

Power simulation
Figure 1 shows the simulation results for power for DBP
and SBP at α = 0.05 in family- and population-based de-
signs alone, the combined data approach, and the meta-
analytic approach. For DBP, the famSKAT had high
power to detect the MAP4, TNN, and CGN genes in the
combined data set (MAP4: 1.00; TNN: 0.780; CGN:
0.755); however, the tests in the combined data had
lower power than those in the population-based data
uence kernel association test in the family-based, population-

Combined Meta-analysis

50) 0.085 (0.050–0.133) 0.095 (0.058–0.144)

27) 0.085 (0.050–0.133) 0.125 (0.083–0.179)

15) 0.080 (0.046–0.127) 0.065 (0.035–0.109)

84) 0.080 (0.046–0.127) 0.055 (0.028–0.096)

02) 0.060 (0.031–0.102) 0.070 (0.039–0.115)

84) 0.060 (0.031–0.102) 0.110 (0.070–0.162)

02) 0.070 (0.039–0.115) 0.105 (0.066–0.156)

64) 0.065 (0.035–0.109) 0.075 (0.043–0.121)

09) 0.090 (0.054–0.139) 0.100 (0.062–0.150)

02) 0.050 (0.024–0.090) 0.070 (0.039–0.115)

39) 0.080 (0.046–0.127) 0.095 (0.058–0.144)

27) 0.095 (0.058–0.144) 0.110 (0.070–0.162)

39) 0.090 (0.054–0.139) 0.130 (0.087–0.185)

27) 0.090 (0.054–0.139) 0.095 (0.058–0.144)

90) 0.075 (0.043–0.121) 0.080 (0.046–0.127)

21) 0.060 (0.031–0.102) 0.080 (0.046–0.127)

15) 0.095 (0.058–0.144) 0.120 (0.078–0.173)

96) 0.055 (0.028–0.096) 0.105 (0.066–0.156)

90) 0.135 (0.091–0.190) 0.105 (0.066–0.156)

27) 0.080 (0.046–0.127) 0.090 (0.054–0.139)

09) 0.065 (0.035–0.109) 0.105 (0.066–0.156)

21) 0.100 (0.062–0.150) 0.125 (0.083–0.179)

96) 0.050 (0.024–0.090) 0.055 (0.028–0.096)
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Fig. 1 Powers of family-based sequence kernel association test (famSKAT)
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focusing on the TNN and CGN genes (TNN: 0.940;
CGN: 0.780). For SBP, the famSKAT had high to moder-
ate power to detect the MAP4, TNN, NPE1, and LEPR
genes (MAP4: 1.00; TNN: 0.615; NPF1: 0.525; LEPR:
0.560) and lower power to detect the FLNB, LRP8, and
GAB2 genes (FLNB: 0.225; LRP8: 0.275; GAB2: 0.380) in
the combined data.

Discussion
In this study, we investigated the combination of
population-based and family-based data via famSKAT to
evaluate best practices when both data types are
available for a particular phenotype of interest. We
showed in simulation studies that famSKAT using the
combined data had high power to detect association be-
tween DBP and/or SBP and the genes that have causal
variants with large effect sizes and had similar levels of
power with the meta-analytic approach for most genes.
Notably, meta-analysis substantially outperforms the
combined data approach for only TNN, while combining
data is substantially better for NRF1, LEPR, LRP8 and
GAB2. Interestingly for these 4 genes, the power gain is
sizable (eg, gain of 52 % power by combining data for
LEPR). However, when there was a considerable
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difference in the powers between family- and
population-based data, famSKAT in the combined data
had lower power than that in the population-based data
alone. For example, the TNN gene for both DBP and
SBP and the CGN gene for DBP in the combined data
had lower power than in the population-based data.
The power of famSKAT in the combined data is more
affected by extremely low power in either data set
(family-based in this case) compared to the meta-
analytic approach. The application of famSKAT to the
GAW19 data demonstrates that combining family-
and population-based data did not improve the power
to detect the TNN, CGN genes compared with the
power from the population-based design only.
The famSKAT test statistic for the combined data

can be influenced by sample imbalance from the 2
designs. This underscores the importance of foresight
in study design as, in this situation, the greatly lower
sample size in the family-based data essentially serves
to dilute signal. As a result of difficulty in subject re-
cruitment and high costs of sequencing, family-based
studies tend to have smaller sample. In addition, our
simulation study shows that both approaches to com-
bine studies, famSKAT with combined data and meta-
analysis, had inflated type I error. These inflated type
I errors, which were largely when using population-
based data, might be a result of unaccounted for
population admixture, even when adjusting for PCs.
Conclusions
The famSKAT test, when combining population-based
and family-based data, had high power to detect an asso-
ciation between DBP and/or SBP and the genes that
have causal variants with large effect sizes. It had similar
levels of power with the meta-analytic approach for most
genes. However, the power of famSKAT in the combined
data was more affected by extremely low power in either
data set compared to the meta-analytic approach. The
famSKAT test statistic for the combined data can be in-
fluenced by sample imbalance from the two designs.
This underscores the importance of foresight in study de-
sign as, in this situation, the greatly lower sample size in
the family-based data essentially serves to dilute signal.
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