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Abstract

Background: Recent focus on studying rare variants makes imputation accuracy of rare variants an important issue.
Many approaches have been proposed to increase imputation accuracy among rare variants, from reference panel
selection to combinations of existing methods to multistage analyses. We aimed to bring the strengths of these
new approaches together with our proposed two-stage imputation for family data.

Methods: Our imputation methods were tested on the region from 46.75Mb to 49.25Mb on chromosome 3. We
did quality control based on the proportion of missing genotypes per variant and individual, leaving 495 individuals
with 761 genome-wide association studies (GWAS) variants only, 45 with 14,077 sequence variants only, and 419
with both GWAS and sequencing data. All data were prephased using SHAPEIT2 with a duo hidden Markov model
algorithm prior to performing imputation. Imputations were performed 100 times, each time masking the sequence
data for 1 individual and imputing it from the GWAS data. We used well-imputed genotypes, defined as a
probability of greater than 0.9, above 2 different minor allele frequency cutoffs—0.01 and 0.05—from Impute2 as
input for Merlin, and compared these results to Impute2 and Merlin separately. The imputed results were evaluated
using correlation measurement and the imputation quality score.

Results: Our method improved imputation accuracy, measured by imputation quality score, for variants with minor
allele frequency between 0.01 and 0.40, but failed to improve accuracy for variants with minor allele frequency less
than 0.01 when we used a minor allele frequency cutoff of 0.01 for the Impute2 results. In contrast, our 2-stage
approach with a minor allele frequency cutoff of 0.05 performed the worst of all methods for variants with minor
allele frequency between 0.01 and 0.40.

Conclusions: This method gave promising results, but may be further improved by changing the inclusion criteria
of Impute2 variants. More analyses are needed on a larger region with different inclusion thresholds to assess the
accuracy of this approach.
Background
Although existing population-based genotype imputation
methods are very accurate for common variants, with
overall best-guess error rates of 5 % to 7 % for the most
common methods [1], they do not perform nearly as well
with rare variants. Only 78 % of variants with a minor al-
lele frequency (MAF) between 0.01 and 0.05 in the Illu-
mina 550K panel and 57 % in the Affymetrix 500K panel
can be well imputed (r2 > 0.7) using BEAGLE [2].
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Most efforts to improve rare variant imputation have
focused on how the choice of reference panel affects im-
putation quality. However, recently Saad et al [3] and
Kreiner-Møller et al [4] have proposed methods to im-
prove imputation using multistep procedures. Saad et al
proposed using 2 imputation methods independently,
1 population based (BEAGLE) and 1 family based
(Genotype Imputation Given Inheritance [GIGI]), and
choosing the imputed data from the method with the
highest variance in genotype probabilities for each single
nucleotide polymorphism (SNP). For instance, if the prob-
abilities for genotypes AA, AB, and BB in an individual
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Table 1 Distribution of family size

Family size 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of families 6 8 24 17 15 5 8 1 3 7 2 2 2
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are 0, 0, and 1.0, respectively, for BEAGLE and 0, 0.5, and
0.5 for GIGI, Saad et al’s method would choose BEAGLE
for that variant, because the larger variance indicates more
certainty in the call. Saad et al found that the combined
method led to more accurate imputed genotypes than ei-
ther method separately. Kreiner-Møller et al suggested a
2-step imputation using a local reference panel and the
1000 Genomes reference panel, implemented in MACH/
Minimac [4, 5]. In the first step, they imputed the study
sample to a densely genotyped local reference panel
enriched for rare variants. Next, they used the best-guess
genotypes from this imputation as well as the original ge-
notypes to impute the study sample to the 1000 Genomes
panel.
Our approach combined the strengths of Saad et al and

Kreiner-Møller et al. We performed a 2-stage imputation,
implementing Impute2 and Merlin sequentially, to test
the hypothesis that increasing the density of genotypes in
a sequenced reference panel using a population-based im-
putation before performing a family-based imputation
would lead to higher imputation accuracy in a related
genome-wide association studies (GWAS) study panel.

Methods
Quality control
Our sample consisted of 959 Mexican Americans from
20 families. All 959 subjects were genotyped on the
Illumina platform, and 464 of these individuals were also
sequenced. We removed all SNPs with more than 5 %
missing data and all individuals with more than 5 %
missing data (N= 45) from the GWAS samples, and lim-
ited our analysis to the 46.75 Mb to 49.25 Mb region on
chromosome 3. This yielded 914 people with GWAS
data and 761 Illumina variants. For the sequenced data,
we removed any variant with more than 10 % missing
data, leaving 14,077 sequenced variants. All sequenced
individuals had less than 5 % missing data. Thus, all 959
individuals were included in the analyses: 495 with
Table 2 Summary statistics of correlation and IQScomparing the im

Quality measurements M

Correlation Masked individuals with GWA

Masked individuals with GWA in LE

Impute with –cluster option

IQS Masked individuals with GWA −

Masked individuals with GWA in LE −

Impute with –cluster option −

GWA genome-wide association
GWAS only, 45 with sequencing only, and 419 with both
GWAS and sequencing.
Phasing
All data were prephased using SHAPEIT2 prior to
performing imputation [6]. We used the duo hidden
Markov model (duoHMM) algorithm in SHAPEIT,
which uses pedigree information from trios to improve
phasing and eliminate Mendelian errors. GWAS and se-
quence data were phased in separate runs.
Imputation
We performed 100 imputations each with 3 different
methods: population-based imputation with Impute2
2.3.1, family-based imputation with Merlin 1.1.2, and a
combination of the two [7, 8]. For each of these 100 im-
putations, we masked the sequence data of 1 individual,
using the individual’s GWAS data instead, and imputed
the sequenced variants not in the GWAS data. After the
imputation, we compared this individual’s imputed geno-
types to his or her true sequenced genotypes. We chose
which sequenced subjects to leave out by randomly or-
dering all 419 subject IDs—excluding the 45 participants
with sequence data but no GWAS data—and choosing
the first 100.
For the population-based imputation benchmark, we

used Impute2 with the default settings. The reference
panel included both a local reference panel of the se-
quenced study individuals and a cosmopolitan reference
panel of all populations from the 1000 Genomes Project
(1KGP) [5]. For the family-based imputation benchmark,
we used Merlin, which combines sparse marker data and
high-density genotype data on several individuals to
infer unobserved high-density genotypes for related indi-
viduals [9]. In the Merlin-only imputation, only our
population samples were used as the imputation back-
bone. Each Merlin imputation included the masked indi-
vidual and their nuclear family, grandchildren, and
grandparents. Table 1 shows the distribution of family
size for 100 individuals. The maximum proportion of
parents and spouses of the masked individuals with
genotype data for sequence variants is 0.667 and the
putation with dense markers and sparse markers

inimum Median Mean Maximum SD

0.00049 0.6983 0.5766 1 0.3714

0.00087 0.6798 0.5708 1 0.3729

0.0000 0.6879 0.5748 1 0.3727

0.04793 0.4046 0.3758 0.9715 0.3007

0.04758 0.3883 0.3659 0.9682 0.2980

0.04887 0.3989 0.3712 0.9682 0.2995



Table 3 Tabulation of genotypes used for IQS calculation

True Genotypes

Imputed Genotypes AA AB BB Total

AA n11 n12 n13 n1.

AB n21 n22 n23 n2.

BB n31 n32 n33 n3.

Total n.1 n.2 n.3 n..
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minimum proportion is 0. The mean proportion is
0.3796 with a standard deviation of 0.35.
Because the algorithm used in Merlin depends on

markers being in linkage equilibrium (LE), we also com-
pared the family-based imputation qualities by using
sparse markers, dense markers, or the haplotype-block
approach [10] (with –cluster option in Merlin). To get
sparse markers, we pruned the GWAS variants in the re-
gion (46.75Mb to 49.25Mb) on chromosome 3 by only
keeping variants with pairwise r2 less than 0.2 imple-
mented in PLINK 1.9, which yielded 91 variants in ap-
proximate LE. The mean pairwise r2 for the 91 variants
was 0.0252 and the median was 0.0014. To get the clus-
tered markers and haplotype frequencies, we searched
for GWAS markers for which r2 is larger than 0.2 and
defined the clusters, including each identified pair and
intervening markers, which were implemented in Merlin
with the–rsq and –cfreq options. The imputations were
conducted with all GWAS variants (dense markers),
pruned GWAS variants in LE and dense markers with
predefined haplotypes, separately. Table 2 presents the
imputation quality measurements (correlation and im-
putation quality score [IQS]). Because of the slight dif-
ferences between these 3 strategies as seen in Table 2
and the fraction of parents and spouses of the masked
individuals having genotype data for sequence variants,
we conclude that the linkage disequilibrium present in
Table 4 Summary of Imputation Quality by MAF

Imputation
Approach

(0,0.01)
4028 SNPs

(0.01,0.0
1416 SN

#SNPp* Mean Var #SNPp*

IQS

Impute2 3023 0.840 0.097 1164

Merlin 4028 0.348 0.132 1416

Combined (0.01)a 4028 0.350 0.133 1416

Combined (0.05) a 4028 0.349 0.133 1416

Correlation

Impute2 3023 0.918 0.048 1164

Merlin 4028 0.512 0.195 1416

Combined (0.01) a 4028 0.514 0.196 1416

Combined (0.05) a 4028 0.513 0.196 1416

*#SNPp is the number of SNPs with a MAF greater than 0 for both real and imputed
aCombined (m) indicates the 2-stage imputation approach with MAF cutoff m
the data is not affecting the Merlin imputation adversely
in this study.
Finally, for the combined imputation method, we se-

lected the best-guess genotypes for all SNPs with MAF
greater than 2 different cutoffs—0.01 and 0.05—and pos-
terior probability of the best-guess genotype greater than
0.9, and used these genotypes as well as the GWASSNPs
as input for Merlin. Merlin automatically excluded from
imputation any variant with Mendelian-inconsistent geno-
typing errors, but it is possible that Impute2 introduced
Mendelian-consistent genotyping errors. However, the 2-
stage and Merlin-only results were almost identical for
variants with MAFs below the cutoff, which leads us to
believe that these potential errors introduced by Impute2
did not negatively affect imputation quality in our sample.

Accuracy assessment
We used 2 different measures of accuracy: correlation
between imputed dosage and true dosage and IQS, a
measure developed by Lin et al in 2010 [11], inspired by
Cohen’s Kappa statistic [12]. Cohen’s Kappa measures
the agreement between 2methods of classification,
adjusting for chance agreement. To apply this to imput-
ation results, we first tabulate the imputed best-guess ge-
notypes and true genotypes, as shown in Table 3, where
nij is the number of individuals with true genotype i and
imputed genotype j. Cohen’s Kappa statistic is given by:

κ ¼

X
i
nii

n :: −

X
i
ni:n:i
n2

::

1−

X
i
ni:n:i

n2
::

This statistic adjusts for agreement by chance by sub-
tracting the expected cell counts along the diagonal
5)
Ps

(0.05,0.4)
1142 SNPs

Mean Var #SNPp* Mean Var

0.772 0.126 761 0.899 0.048

0.437 0.041 1142 0.404 0.006

0.965 0.017 1142 0.992 0.004

0.443 0.041 1142 0.992 0.004

0.981 0.006 761 0.999 0.00004

0.663 0.064 1142 0.687 0.007

0.975 0.010 1142 0.994 0.003

0.669 0.063 1142 0.993 0.003

genotypes (varies by method)
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(which indicates agreement) from the observed propor-
tion of agreement. In cases where the expected agree-
ment is high, such as with variants with low MAFs, the
second term in the numerator is higher, thus lowering
the Kappa statistic. Lin et al extended this idea to in-
corporate the uncertainty of imputation by using the
posterior probabilities of all 3 genotypes instead of the
best-guess genotype, thus allowing the cells in Table 3 to
have noninteger values. Cohen’s Kappa and the IQS are
equivalent when all cells in Table 3 are integers (ie, when
Fig. 1 Imputation quality vs. MAF. a IQS for all polymorphic sequence varia
polymorphic sequence variants. c IQS for rare (MAF < 0.05) polymorphic se
rare (MAF < 0.05) polymorphic sequence variants
all posterior probabilities are 0 or 1), but differ when
there is uncertainty in the imputation. Consequently,
IQS is useful for rare variants because, unlike concord-
ance, it accounts for allele frequency and adjusts for
chance agreement. Furthermore, IQS can be computed
using dosages, which gives more information about im-
putation quality than best-guess genotypes. Lin et al
have compared the performance of IQS and concord-
ance for population-based imputations implemented in
Impute2. The authors show that concordance increases
nts. b Correlation between true and imputed dosages for all
quence variants. d Correlation between true and imputed dosages for
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with decreased MAF, whereas IQS drops as MAF de-
creases. The decreasing imputation quality with decreas-
ing MAF is expected, as rare variants do not impute well
[13], making IQS a better measure of imputation quality.

Results
Among 100 individuals that we selected, the number of
imputed polymorphic sequence variants is 6726. The ac-
curacy assessments with IQS and correlation were con-
ducted within the 100 individuals and polymorphic
variants. However, different imputation strategies yield
different numbers of polymorphic variants with mean-
ingful IQS or correlation (Table 4). This is because both
imputed and true genotypes must be polymorphic to ob-
tain a meaningful IQS or correlation, and the number of
polymorphic imputed genotypes varied by method.
Generally, our proposed 2-step imputation method per-

formed better than only using population-based imput-
ation with Impute2 or only using family-based imputation
with Merlin for the variants with a MAF larger than 0.1
and less than 0.4 (Figs. 1a and b). With decreasing the cut-
off of MAF for selected imputed variants from population-
based imputation using Impute2, the imputation of our
method outperformed for most of rare variants with minor
MAF between 0.01 and 0.05 (Figs. 1c and d). For common
variants, the different cutoffs of the MAFs give similar
imputations.

Discussion
Our combined method with a MAF cutoff of 0.01 per-
formed better than either Merlin or Impute2 alone for
variants with MAFs between 0.01 and 0.4, and our com-
bined method with a MAF cutoff of 0.05 performed bet-
ter than either Merlin or Impute2 alone for variants
with MAFs >0.05. Because the performance suffers
below our MAF cutoffs, this suggests that we should not
filter Impute2 results by MAF at all, but filter only by
best-guess genotype probability.
One potential limitation of this study is that families

with more sequence data were more likely to be selected
in our set of 100 individuals. We would expect higher
imputation accuracy in these families, as there were
more individuals included in the reference panels for im-
putation. More work needs to be done to determine
exactly how much the number and relationships of se-
quenced family members available affect imputation
quality. This was beyond the scope of our project, but
may be useful in helping investigators choose which
family members to sequence.
It is unclear from these results whether the sequential

nature of the imputation increases accuracy. In the fu-
ture, we should compare our method to a method com-
bining independent results from Merlin and Impute2,
both based on best-guess genotype probability and Saad
et al’s proposed vote strategy [3]. Furthermore, future
studies should be done on a larger region and larger
sample size, and potentially include different probability
thresholds for the Impute2 results.

Conclusions
Our 2-stage method with a MAF inclusion cutoff of 0.01
for Impute2 results achieved better IQSs than either
Impute2 or Merlin alone, and similar correlation values,
for variants with MAFs between 0.01 and 0.4. This
method could be further improved by including all Im-
pute2 imputed genotypes above a certain quality threshold
regardless of MAF. Other probability thresholds should be
tested, and this 2-stage method should be compared to re-
sults using Merlin and Impute2 independently to examine
whether the sequential nature of the procedure increases
accuracy above and beyond the increase obtained by com-
bining population- and family-based methods.
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