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Abstract

Pedigree genome-wide association studies (GWAS) (Option 29) in the current version of the Mendel software is an
optimized subroutine for performing large-scale genome-wide quantitative trait locus (QTL) analysis. This analysis (a)
works for random sample data, pedigree data, or a mix of both; (b) is highly efficient in both run time and memory
requirement; (c) accommodates both univariate and multivariate traits; (d) works for autosomal and x-linked loci; (e)
correctly deals with missing data in traits, covariates, and genotypes; (f) allows for covariate adjustment and
constraints among parameters; (g) uses either theoretical or single nucleotide polymorphism (SNP)–based empirical
kinship matrix for additive polygenic effects; (h) allows extra variance components such as dominant polygenic
effects and household effects; (i) detects and reports outlier individuals and pedigrees; and (j) allows for robust
estimation via the t-distribution. This paper assesses these capabilities on the genetics analysis workshop 19
(GAW19) sequencing data. We analyzed simulated and real phenotypes for both family and random sample data
sets. For instance, when jointly testing the 8 longitudinally measured systolic blood pressure and diastolic blood
pressure traits, it takes Mendel 78 min on a standard laptop computer to read, quality check, and analyze a data set
with 849 individuals and 8.3 million SNPs. Genome-wide expression QTL analysis of 20,643 expression traits on 641
individuals with 8.3 million SNPs takes 30 h using 20 parallel runs on a cluster. Mendel is freely available at
http://www.genetics.ucla.edu/software.
Background
The classical variance component model has been a
powerful tool for mapping quantitative trait loci (QTLs)
in pedigrees. Polygenic effects are effectively modeled by
introducing an additive genetic variance component op-
erating on the kinship coefficient matrix. With unknown
or dubious pedigree structure, global kinship coefficients
can be accurately estimated from dense markers using
either the genetic relationship matrix (GRM) or the
method of moments. In GWAS (genome-wide associ-
ation studies), the 2 alleles of a SNP (single nucleotide
polymorphism) shift trait means and can be tested as a
fixed effect. However, fitting a variance component
model is computationally challenging, especially when it
has to be done for a large number of markers. In the
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newly released version of the Mendel software [1],
Option 29 implements an ultrafast score test for pedi-
gree GWAS. Score tests require no additional iteration
under the alternative model. Only SNPs with the most
promising score-test p values are further subject to like-
lihood ratio testing, thus achieving a good compromise
between speed and power for large-scale QTL analysis.
In this paper, we demonstrate the capabilities of Mendel
on the Genetic Analysis Workshop 19 (GAW19) se-
quencing data.
Methods
QTL association mapping typically invokes the multi-
variate normal distribution to model the observed T-
variate trait Y ∈ℝn × T over a pedigree of n individuals.
The standard model [2] collects the means of the re-
sponses vec(Y) into a vector v and the corresponding
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covariances into a matrix Σ and represents the loglikeli-
hood of a pedigree as

L ¼ −
1
2
ln det Σ−

1
2
vec Yð Þ−υ½ �tΣ−1 vec Yð Þ−υ½ �;

where the covariance matrix is typically parametrized as
Σ = 2Σa ⊗ Φ + Σd ⊗ Δ7 + Σh ⊗ H + Σe ⊗ I. Here Φ is
the global kinship matrix capturing additive polygenic
effects, and Δ7 is a condensed identity coefficient matrix
capturing dominance genetic effects. For Φ, Mendel can
use (a) the theoretical kinship matrix from provided
pedigree structures; (b) SNP-based estimates for the
kinship of pairs of people within each pedigree; or (c)
SNP-based estimates for the entire global kinship matrix
ignoring pedigree information. To estimate kinship coef-
ficients from dense SNP data, Mendel employs either
the GRM or the method of moments [3, 4]. The house-
hold effect matrix H has entries hij = 1 if individuals i
and j are in the same household and 0 otherwise. Indi-
vidual environmental contributions and trait measure-
ment errors are incorporated via the identity matrix I.
QTL fixed effects are captured through the mean com-
ponent υ =Aβ for some predictor matrix A and vector
of regression coefficients β. To test a SNP against a T-
variate trait, A is augmented with T extra columns hold-
ing the allele counts at the SNP, and the corresponding
regression coefficients are jointly tested for association
[5]. For longitudinal measurements of covariates such as
smoke, age, and blood pressure medication (BPmed), we
may either assume time varying effect sizes or constrain
their effect sizes at different time points to be the same.
The latter tactic leads to a more parsimonious and inter-
pretable model and can be easily enforced by setting
appropriate parameter constraints in Mendel’s control
file, which lists the user’s choice of model parameters. In
Mendel, SNPs with the most impressive test score p
values (top 10 by default) are further tested by the more
accurate, but slower, likelihood ratio method, thus
achieving a good compromise between speed and power
for large-scale QTL analysis. We refer readers to our
Table 1 Empirical power for testing trivariate DBP and SBP traits and
simulation data in files SIMPHEN.1–SIMPHEN.200

SNP MAF (DBP1, DBP2, DBP3)

βDBP %Var Power

3-47913455 0.0049 −5.4633 0.0036 0.05 ± 0.0

3-47956424 0.3777 −1.4951 0.0117 0.35 ± 0.0

3-47957741 0.0016 −5.0841 0.0024 0.04 ± 0.0

3-47957996 0.0301 −4.6435 0.0122 0.82 ± 0.0

3-48040283 0.0318 −6.2235 0.0229 0.84 ± 0.0

3-48040284 0.0131 −6.9531 0.0091 0.47 ± 0.0
companion manuscript [6] for more model and imple-
mentation details.

Results and discussion
Family data
Size and power study using simulated traits
(SIMPHEN.1–200)
The power to detect the 6 functional variants in the
MAP4 gene on chromosome 3 is evaluated from the 200
simulation replicates of the trivariate traits systolic blood
pressure (SBP) and diastolic blood pressure (DBP). Type
I errors are evaluated from the univariate Q1 trait, which
does not involve a major gene. Our analysis includes co-
variates sex, age, BPmed, smoke, and their pairwise in-
teractions, and uses the theoretical kinship matrix as the
additive polygenic variance component. We constrain
the covariate effects to be equal across 3 time points.
Table 1 shows that the type I error is well controlled.
Not surprisingly the power for detecting the 2 rare func-
tional variants 3-47913455 and 3-47957741 is extremely
low.

QTL analysis of the real, 8-variate phenotype
(DBPi, SBPi, i = 1, 2, 3, 4)
Our analyses are based on the genotype calls for 959 in-
dividuals (464 directly sequenced and the rest imputed)
provided in the chrNN-geno.csv.gz files. SBPs and DBPs
measured at 4 time points are available for 1389 mem-
bers from 20 extended families. The largest family con-
tains 107 individuals; the smallest, 27. Genotypes at
8,348,674 SNPs were available on 959 of the individuals.
We analyzed all SNPs and pedigrees together for the
8-variate trait (SBPi, DBPi, i = 1, 2, 3, 4). Our model in-
cludes covariates sex, age, BPmed, smoke, and their pair-
wise interactions, and we constrain the covariate effects
to be equal across 4 time points. The log-likelihoods of
the null model (no SNPs included) using the theoretical
kinship, GRM within pedigrees, or GRM across all
individuals are −11675.95, −11696.90, and −11698.71,
respectively, indicating that the provided pedigree infor-
mation captures additive genetic effects adequately. The
empirical type I error for testing the univariate Q1, based on

(SBP1, SBP2, SBP3) Q1

βSBP %Var Power Size

2 −8.7001 0.0044 0.06 ± 0.02 0.06 ± 0.02

3 −2.3810 0.0143 0.42 ± 0.03 0.03 ± 0.01

1 −8.0964 0.0030 0.06 ± 0.02 0.06 ± 0.02

3 −7.3946 0.0149 0.89 ± 0.02 0.05 ± 0.01

3 −9.9107 0.0278 0.89 ± 0.02 0.05 ± 0.01

4 −11.0726 0.0111 0.56 ± 0.06 0.04 ± 0.01



Fig. 1 Multivariate QTL analysis of the real, 8-variate trait (SBPi, DBPi, i = 1, 2, 3, 4) from the family data with 849 individuals and 3.1 million SNPs
(after filtering). Manhattan plot (left) and quantile–quantile (Q-Q) plot (right). The horizontal line represents the genome-wide significance level.
The total run time on a laptop with an Intel Core i7 2.6 GHz CPU and 16 GB RAM was 78 min
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results summarized below use the theoretical kinship
matrix.
To read in all the data and run standard quality con-

trol (QC) procedures took just under 5 min. QC ex-
cluded 10,603 SNPs and 110 individuals based on
genotyping success rates below 98 %. The remaining
8,338,071 SNPs and 849 individuals were analyzed. The
subsequent ped-GWAS analysis ran in 73 min for all re-
sults reported in Fig. 1 and Tables 2 and 3. Because we
excluded rare SNPs with low minor allele frequencies
<0.03 across 849 individuals, p values were calculated
for only 3,084,046 SNPs. Accordingly the genome-wide
significance threshold is 1.62 × 10−8 or 7.79 on the log10
scale; the threshold for a false discovery rate (FDR) of
0.05 is 4.19 × 10−8 or 7.38 on the log10 scale.
Table 2 Multivariate QTL analysis of the real, 8-variate trait
(SBPi, DBPi, i = 1, 2, 3, 4) from the family data with 849 individuals
and 3.1 million SNPs (after filtering). Estimated mean effects under
the null model (no SNPs included) using the theoretical kinship
matrix for the additive polygenic variance component

Mean effects SBPsi DBPsi

βSex 10.21 4.24

βAgei 0.32 0.02

βBPmedi 3.11 10.07

βSmokei 1.53 1.84

βSexi�BPmedi −3.20 −1.84

βSexi�Smokei 0.30 −0.73

βSexi�Agei
0.41 0.14

βBPmedi�Smokei 3.83 2.43

βBPmedi�Agei
0.01 −0.35

βSmokei�Agei
−0.06 −0.06
Table 2 lists the estimates for environmental effects
and their interactions under the null model (no SNPs in-
cluded). Figure 1 displays the Manhattan and quantile–
quantile (Q-Q) plots. The genomic inflation factor of
1.023 indicates no systematic bias. One SNP passes the
Bonferroni-corrected genome-wide significance level,
and 3 SNPs pass the FDR 0.05 threshold. They are listed
in Table 3. SNP 1-142617328 has a Hardy-Weinberg
equilibrium (in founders) p <10−22, indicating possible
genotyping error. The remaining 2 significant SNPs
occur at 118,783,424 and 118,767,564 base pairs, re-
spectively, on chromosome 11. Both show a minor allele
frequency (MAF) of 0.02778 in 413 founders. Because
the MAFs in all 849 individuals are higher than 0.03,
they were not removed in the filtering stage.

Genome-wide expression QTL analysis of 20,634 expression
traits
Genome-wide measures of 20,634 gene expression levels
in peripheral blood mononuclear cells from the first
study examination are provided for 643 individuals in
the family data. The formidable task of exhaustive
Table 3 Multivariate QTL analysis of the real, 8-variate trait
(SBPi, DBPi, i = 1, 2, 3, 4) from the family data with 849 individuals
and 3.1 million SNPs (after filtering). Three SNPs pass the FDR 0.05
threshold. The top SNP, 11-118783424, also passes the
genome-wide significance level

SNP Base pair MAF − log10(p) HW p value

11-118783424 118,783,424 0.02778 7.84 0.7665

11-118767564 118,767,564 0.02778 7.68 0.7665

1-142617328 142,617,328 0.49074 7.38 0.0000

HW Hardy-Weinberg, MAF minor allele frequency



Fig. 2 Summary of the eQTL analysis. Left: Histogram of the genomic inflation factors λGC. Right: Top expression-SNP hits from the eQTL analysis.
Each dot represents an expression-SNP association that satisfies: genomic inflation factor λGC < 1.1, p <5.77 × 10−13, SNP Hardy-Weinberg test
(in founders) p >10−8, SNP MAF in 641 individuals >0.01, and the expression probe is annotated in the EXPR_MAP.csv file. Dot size and color
vary according to their p values on the log10 scale. Total run time (20,634 expressions vs. 8,338,071 SNPs) on a cluster with 20 parallel jobs was
approximately 30 h
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expression quantitative trait locus (eQTL) analysis
(20,634 expressions vs. 8,338,071 SNPs) can be easily
managed using Mendel. We submitted 20 parallel jobs
to a cluster and finished the complete analysis in ap-
proximately 30 h.
In all eQTL runs, SNPs and individuals with genotyp-

ing success rate equal to or less than 0.98 are excluded
from analysis. Rare variants with MAF equal toor less
than0:01 in all individuals are also excluded. This leaves
641 individuals and 4,199,714 SNPs. The theoretical
kinship matrix is used for the additive polygenic vari-
ance component. Our analysis includes covariates sex,
age, BPmed, smoke, and their pairwise interactions.
Initialization takes approximately 5 min; the subsequent
genome-wide QTL mapping of each expression trait takes
approximately 1 to 2 min. The left panel of Fig. 2 displays
a histogram of genomic inflation factors from 20,634
genome-wide QTL analyses. They are well-concentrated
Table 4 Empirical rejection rates (standard errors in parenthesis)
for testing five variants in the MAP4 gene against the bivariate
(SBP, DBP) trait, based on simulation data in files SIMPHEN.1-
SIMPHEN.200 for 1943 unrelated individuals

SNP MAF Rejection rate

3-47956424 0.3435 1.00 (0.00)

3-47957741 0.0005 0.09 (0.02)

3-47957996 0.0229 1.00 (0.00)

3-48040283 0.0281 1.00 (0.00)

3-48040284 0.0070 0.12 (0.02)
around 1 and indicate no or little systematic bias. The
right panel shows the top hits that satisfy a set of stringent
criteria listed in the figure caption. Note that the
whole eQTL significance level is set at 0.05/20634/
4199714 = 5.77 × 10− 13.

Unrelated data
A second data set consists of exome sequence calls,
blood pressure phenotypes at a single time point, and
simulated phenotypes on a large set of unrelated individ-
uals. Like the family data set, these individuals are
Mexican Americans; however, they were independently
ascertained and do not overlap with the family data set.

Size and power study using simulated traits
(SIMPHEN.1–200)
The data set provides 200 simulation replicates of the
trait SBPs and DBP. However, GAW19 organizers did
not distribute the exact simulation details, except to
state that “The set of causal variants is somewhat differ-
ent since this is exome data rather than the full sequence
data that was provided last time, and so not all of the
GAW18 variants, regulatory ones in particular, are
present in the new data set.” This precludes a precise
size and power study.
For ease of comparison, we tested 5 of the 6 variants

displayed in Table 1 (for family data) against the bi-
variate trait (SBP, DBP) for all 200 simulation repli-
cates and report the rejection rates in Table 4. In the
model, we include covariates sex, age, BPmed, smoke,
and their pairwise interactions, and use the SNP-based



Fig. 3 QTL analysis of the real, bivariate (SBP, DBP) trait for 1850 unrelated individuals and 52,314 SNPs with a MAF >0.01. Manhattan plot (left)
and Q-Q plot (right). The horizontal line represents the genome-wide significance level; no SNPs pass this level. Total run time on a laptop with
Intel Core i7 2.6 GHz CPU and 16 GB RAM was 39 min
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genetic relation matrix for modeling additive polygenic
inheritance.
QTL analysis of the real, bivariate phenotypes
(DBP and SBP)
The phenotypes SBP and DBP measured at the first
examination are available for 1943 unrelated American
Mexicans. We analyzed all SNPs and bivariate traits
(SBP, DBP). To read in all the data and run standard QC
procedures took 1 min and 16 s. QC excluded 10,191
SNPs and 93 individuals based on genotyping success
rates below 98 %. The remaining 1,701,575 SNPs and
1850 individuals were analyzed. GRM calculated from
whole genome SNPs was used to adjust for polygenic ef-
fects. The subsequent ped-GWAS analysis ran in 37 min
and 5 s and included all of the results plotted in Fig. 3
and Table 5. Because we exclude rare variants with a
MAF equal to or less than 0.01 in all individuals, p values
were calculated for 52,314 SNPs. Accordingly, the
Table 5 QTL analysis of the real, bivariate (SBP, DBP) trait for
1850 unrelated individuals and 52,314 SNPs with MAF >0.01.
Mean effects (standard errors in parenthesis) and variance
components under the null model using GRM with all
individuals

Mean effects SBP DBP

μ 94.87 (1.62) 78.46 (0.95)

βSex 10.90 (1.63) 4.62 (0.95)

βAge 0.43 (0.05) −0.13 (0.03)

βSex × age 0.38 (0.06) 0.08 (0.04)

Var. comp. Σa ¼ 43:15 17:03
17:03 12:07

� �
Σe ¼ 294:88 113:90

113:90 102:61

� �
genome-wide significance threshold is 9.56 × 10−7 or 6.02
on the log10 scale.
Estimated environmental effects and their interactions

and variance components under the null model (no
SNPs included) are listed in Table 5. Figure 3 displays
the Manhattan and Q-Q plots. The genomic inflation
factor of 1.001 indicates no systematic bias. No SNPs
pass the genome-wide significance level or FDR 0.05
threshold.
Conclusions
All analyses in this article use Mendel v14.3, which is
freely available at http://www.genetics.ucla.edu/software.
Pedigree GWAS (Option 29) in Mendel proves to be an
extremely efficient and versatile implementation for
large-scale QTL analysis. Most competing programs ig-
nore multivariate traits and outliers altogether. See Zhou
et al [6] for a side-by-side comparison with the Factored
Spectrally Transformed Linear Mixed Model (FaST-
LMM) [7] and GEMMA (Genome-wide Efficient Mixed-
Model Analysis) [8] programs. Here we have emphasized
Mendel’s flexibility in specifying the global kinship
matrix, adjusting for confounding, and capturing inter-
actions. These assets, plus its raw speed, make it an ideal
environment for QTL mapping. Mendel continues to
mature, and geneticists are advised to give it a second
look for genetic analysis [1]. In rare variant mapping,
each variant may be too rare to achieve significance in
hypothesis testing. Grouping related SNPs in a variance
component may be more powerful than the mean com-
ponent models used here. Extending Mendel to test vari-
ance component is among the focuses of our current
work.

http://www.genetics.ucla.edu/software
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