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Abstract

Several variants have been implicated earlier on ULK4 and MAP4 genes on chromosome 3 to be associated with
hypertension. As a natural follow-up step, we explore association of haplotypes in those genes. We consider the Genetic
Analysis Workshop 19 real data on unrelated individuals and analyze haplotype blocks of 5 single-nucleotide
polymorphisms through a sliding window approach. We apply 4 haplotype association methods—haplo.score, haplo.glm,
hapassoc, and logistic Bayesian LASSO (LBL)—and for comparison, sequence kernel association test (SKAT) and its variants.
We find several rare haplotype blocks to be associated. To get an idea about the false-positive proportions, we also
analyzed the data after permuting the case-control status of individuals. We found that LBL, unlike the other methods,
maintains low false-positive rates in presence of rare haplotypes. Thus, we conclude that the haplotypes found to be
associated by LBL are more likely to be true positive. SKAT and its variants did not find significance on either gene.
Background
Past studies have implicated several variants on chromo-
some 3, in particular, on genes ULK4 and MAP4, as being
associated with blood pressure and hypertension [1–9]. A
typical follow-up step is to zoom into these regions through
haplotype association analyses. Haplotype-based methods
can be more powerful than single single-nucleotide
polymorphism (SNP) methods especially when the causal
variants are not genotyped or multiple variants act in cis
[10–12]. In some situations, they also have increased power
over the recently developed popular “collapsing” methods
for detecting rare variant associations [13–15]. The avail-
ability of Genetic Analysis Workshop (GAW) 19 exome se-
quencing data on hypertension provides such an
opportunity [16]. However, a majority of SNPs in the
GAW19 data set are rare; for example, less than 3 % of var-
iants on chromosome 3 have a minor allele frequency
(MAF) of 0.01 or more, so when rare SNPs are combined
to form haplotype blocks, the haplotypes will be even rarer.
Thus, it is important to use a haplotype association method
that can handle rare haplotypes.
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Logistic Bayesian LASSO (least absolute shrinkage and
selection operator) (LBL) has been proposed for detect-
ing rare haplotype association and has shown promising
results in both real and simulated data sets [17–19]. By
regularizing the regression coefficients through their
prior distributions, LBL weeds out unassociated (espe-
cially common) haplotypes, allowing the associated rare
haplotypes to be more easily detected. Extensive simula-
tion studies, including those on GAW18 data [19], have
shown that LBL has good power to detect associated
haplotypes (rare as well as common) while maintaining
low type I error rates. Thus, we choose to use this
method for studying haplotype association in this article.
Additionally, we also use 3 standard and widely used
haplotype association methods—haplo.score [20] and
haplo.glm [21] implemented in R package haplo.stats,
and hapassoc [22], another R package.
Methods
Statistical methods for haplotype association
The three standard approaches considered here—haplo.-
score, haplo.glm, and hapassoc—are based on the gener-
alized linear model (GLM). In haplo.score, a global test
of association as well as individual haplotype-specific
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tests are carried out using a score function. It estimates
haplotype frequencies independently of trait or covariates
under the null hypothesis of no association. Haplo.score
does not estimate the magnitude of individual haplotype
effects. Haplo.glm is an extension of haplo.score for testing
haplotype–environment interactions (it can fit a main-
effects-only model also). Unlike haplo.score, it iteratively
estimates haplotype frequencies conditional on all observed
data and current estimates of regression parameters. It uses
Wald tests for testing a global haplotype–environment
interaction effect and individual haplotype-specific effects.
Also, it estimates the magnitude of individual haplotype ef-
fects [21]. Hapassoc was proposed as an extension of
haplo.glm to accommodate missing genotype data at
individual SNPs (although haplo.glm can now accom-
modate missing genotypes) and uses an improved ap-
proximation to standard error estimation [22]. All of
these methods can handle binary as well as continu-
ous response.
As the above three approaches are not specifically de-

signed for rare haplotypes, they may or may not perform
well in presence of rare haplotypes. Indeed, in previous
studies [17–19], hapassoc has shown high non-
convergence rates when rare haplotypes are modeled indi-
vidually rather than pooled together, which is a typical ap-
proach for handling rare haplotypes but one that doesn’t
allow study of individual rare haplotypes. Thus, we also
apply LBL, which is described in details in Biswas and Lin
[17] and Biswas et al [18], and briefly here.
LBL is based on a retrospective likelihood; that is, it

models the probability of haplotypes given disease status.
The unobserved (phased) haplotypes of subjects are treated
as missing data and frequencies of haplotype pair for each
person are modeled using haplotype frequencies (treated as
unknown parameters) and allowing for Hardy-Weinberg
disequilibrium. The odds of disease are expressed as a logis-
tic regression model, whose coefficients are regularized
through a double-exponential prior centered at zero and a
variance parameter, which is further assigned a hyper prior.
This regularization corresponds to the Bayesian LASSO.
Markov chain Monte Carlo methods are used for estimat-
ing the posterior distributions of all parameters, which in-
clude regression coefficients and haplotype frequencies.
Testing for association for each main and interaction effect
is carried out by calculating the Bayes factor (BF). A BF ex-
ceeding 2 is considered significant evidence of association.
The posterior mean and confidence intervals of parameters
can be obtained, if desired. LBL is available as an R package
at http://www.utdallas.edu/~swati.biswas/. Currently, LBL
can only handle binary (case-control) responses.

Selection of regions and data for analysis
We consider 2 genes—ULK4 and MAP4. We exclude
SNPs with more than 25 % of genotypes missing and
include SNPs with a MAF of at least 0.001. We use slid-
ing and overlapping windows made up of 5 SNPs to cre-
ate haplotype blocks (eg, SNPs 1 to 5, 2 to 6, and so on)
to cover the whole gene.
For selection of SNPs and calculation of MAF, we used

genotypes listed under NALTT (the number of alternate
alleles thresholded), coded as 0/1/2; these are high-
quality genotypes. An alternate allele is usually the
minor allele (but not always); for simplicity, we coded
the major allele as 0 and minor allele as 1. For pheno-
type, we defined a binary hypertension trait as fol-
lows. If a person has systolic blood pressure (SBP)
greater than 140 or diastolic blood pressure (DBP)
greater than 90 or is taking antihypertensive medica-
tion, we labeled that person to be affected by hyper-
tension (case). Otherwise, the individual is labeled as
unaffected (control). Also, a person with SBP and
DBP values below thresholds and whose medication
field is missing is treated as a control.
We apply all four methods on the above described

haplotype blocks without using any covariates. For LBL,
we use a threshold of BF greater than 2, whereas for
other methods we use a p value of less than 0.05 to de-
clare significance. We analyze blocks in each gene twi-
ce—using the provided phenotypes and after randomly
permuting the phenotype status among all subjects. The
latter destroys association, if there is any, and so allows
us to gauge the false-positive rates. Finally, we also ana-
lyzed using LBL after including in the model the covari-
ate age (dichotomized at 55) and its interaction with
haplotypes.
To allow for rare haplotypes to be analyzed indi-

vidually, and not be pooled together, we set the pool-
ing tolerance of hapassoc to zero, where pooling
tolerance is a value (user-defined) of haplotype fre-
quency below which the corresponding haplotypes are
pooled into a single category called pooled in the
design matrix for the risk model. In the hapassoc
package, there is a pre-processing function called
pre.hapassoc, which returns a list of compatible hap-
lotypes for each person’s genotypes and frequencies of
all haplotypes in the population. These are provided
as input to hapassoc and LBL. In LBL, the estimated
frequencies of haplotypes are used as starting values
of frequency parameters. Haplo.glm does not allow
pooling tolerance to go below 0.001. For a fair com-
parison of haplo.glm and hapassoc, we also ran hap-
assoc with pooling tolerance of 0.001. Haplo.score
does not pool any haplotypes. Finally, for comparison
purpose, we also analyzed each gene (all SNPs within
a gene together) using popular collapsing approaches
of sequence kernel association test (SKAT), SKAT-
Optimal (SKAT-O), and SKAT-Combined (SKAT-C)
[23–25].
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Results
The total numbers of cases and controls are 456 and
1395, respectively (n = 1851) after excluding subjects
with missing disease status. We report the results for
ULK4 and MAP4 genes separately.

ULK4 gene
There are 70 SNPs. and so, with a sliding window of 5
SNPs, we analyzed a total of 66 haplotype blocks. A sig-
nificant haplotype was found by at least one of the
methods in 36 blocks. Using LBL, we found evidence for
association in 18 blocks, as shown in Table 1. These
blocks are in the regions 412910181 (SNP 3) to
41759191 (SNP 22) bp and 419425423 (SNP 39) to
41949348 (SNP 48) bp. In particular, the blocks 40 to 44
and 42 to 46 have haplotypes with extremely strong evi-
dence of association with BF greater than 100. However,
in these and some other blocks in Table 1, haplo.glm or
haplo.score results were not significant. In Table 2, we
report the haplotypes found to be significant by either of
these two methods but not by LBL. Hapassoc with
Table 1 Significant haplotypes on ULK4 gene by LBL

SNP# in haplotype block Location Hap name Hap freq

3–7 41291081–41497081 10101 0.0014

4–8 41439551–41497115 01010 0.0012

5–9 41439790–41504594 10101 0.0012

6–10 41439797–41504679 01010 0.0014

7–11 41497081–41607541 10100 0.0013

8–12 41497115–41657184 01000 0.0014

9–13 41504594–41722969 10000 0.0014

11–15 41607541–41723054 00010 0.0019

15–19 41723054–41756933 00010 0.0125

16–20 41723090–41756965 00101 0.0122

17–21 41723151–41756986 01011 0.0121

18–22 41723280–41759191 10111 0.0118

39–43 41925423–41939990 00001 0.0055

40–44 41937000–41939992 10000 0.0935

00010 0.0050

00100 0.0466

00101 0.0769

41–45 41938500–41942199 00011 0.0458

42–46 41938522–41942348 01000 0.0062

00110 0.0443

43–47 41939990–41949301 01101 0.0413

44–48 41939992–41949348 11010 0.0418

Major allele is coded as zero. SNP# corresponds to the order of SNP in the gene am
Hap haplotype, Hap freq haplotype frequency (obtained from hapassoc); NA, haplo.
*Significant BF or p value
pooling tolerance of zero converged in only six blocks,
and was significant in three blocks starting with SNPs 6, 7,
and 9. With pooling tolerance of 0.001, it converged in 15
more blocks; in that case, its results were similar to that of
haplo.glm, which converged in all blocks. When LBL was
analyzed by including age and its interaction with haplo-
types, some of the haplotypes found significant earlier
with main effects only model were still significant (but not
all of them). Additionally, we found significant interac-
tions of age with haplotypes in the region covered by SNPs
60 to 69 (41960004 to 41996136). Interestingly, these in-
teractions are protective (odds ratio [OR] < 1) and their
main effects are not significant (same holds in the main-
effects-only model). The main effect of age was also sig-
nificant. SKAT and its variants did not show significance
in this gene. The p values for SKAT, SKAT-C and SKAT-
O are 0.170, 0.239, and 0.258, respectively.

MAP4 gene
There are 18 SNPs and so there is a total of 14 of the 5-
SNP haplotype blocks. A significant haplotype was found
LBL (OR) LBL (BF) Haplo GLM
(p value)

Haplo score
(p value)

Haplo score
overall test
(p value)

3.823 3.232* 0.023* 0.004* 0.204

6.064 5.627* 0.000* 0.001* 0.016*

5.920 6.796* 0.000* 0.001* 0.012*

3.477 2.909* 0.000* 0.004* 0.008*

3.490 2.511* 0.000* 0.004* 0.009*

3.511 3.061* 0.000* 0.004* 0.005*

3.314 2.511* 0.024* 0.004* 0.005*

0.218 2.020* 0.000* 0.130 0.085

0.384 4.736* 0.032* 0.019* 0.129

0.382 4.599* 0.029* 0.022* 0.125

0.385 4.254* 0.032* 0.022* 0.191

0.358 7.985* 0.019* 0.015* 0.128

2.512 3.396* 0.012* 0.004* 0.219

2.101 3.930* 0.282 0.132 0.180

6.598 >100* 0.048* 0.002*

4.586 >100* 0.234 0.121

0.546 2.456* 0.668 0.314

2.623 6.006* 0.185 0.895 0.357

2.166 2.031* 0.235 0.024* 0.157

3.462 >100* 0.325 0.743

2.285 4.025* NA 0.887 0.428

2.201 3.677* 0.525 0.807 1.000

ong SNPs with MAF ≥0.001 and no more than 25 % missing genotypes
glm did not run for this region and gave an error



Table 2 Significant haplotypes on ULK4 gene by haplo.glm or haplo.score (in addition to those indicated in Table 1)

SNP# in haplotype block Location Hap name Hap freq LBL (OR) LBL (BF) Haplo GLM
(p value)

Haplo score
(p value)

Haplo score
overall test
(p value)

8–12 41497115–41657184 00001 0.0014 2.471 1.430 0.040* 0.010* 0.005*

9–13 41504594–41722969 00010 0.0016 2.022 1.123 0.035* 0.016* 0.005*

10–14 41504679–41722976 00100 0.0016 2.155 1.050 0.036* 0.016* 0.064

00001 0.0019 0.218 1.743 0.000* 0.130 0.064

11–15 41607541–41723054 01000 0.0016 2.118 1.394 0.037* 0.016* 0.085

00001 0.0011 0.305 1.151 0.000* 0.252 0.085

12–16 41657184–41723090 10000 0.0016 2.137 1.281 0.036* 0.016* 0.041*

00010 0.0011 0.307 1.278 0.000* 0.252 0.041*

00100 0.0019 0.226 1.773 0.000* 0.130 0.041*

26–30 41796016–41841618 00001 0.0033 2.036 1.340 0.047* 0.040* 0.331

10000 0.0016 0.286 1.355 0.000* 0.161 0.331

27–31 41796025–41841716 00010 0.0032 1.945 1.051 0.045* 0.040* 0.565

28–32 41831203–41841811 00100 0.0032 1.900 0.989 0.047* 0.040* 0.357

00001 0.0018 0.248 1.595 0.000* 0.132 0.357

30–34 41841618–41861013 10000 0.0030 1.877 1.036 0.039* 0.046* 0.649

01001 0.0016 0.565 0.737 0.000* 0.487 0.649

39–43 41925423–41939990 01010 0.0012 0.555 0.809 0.000* 0.543 0.219

40–44 41937000–41939992 10010 0.0016 0.821 0.798 0.000* 0.495 0.253

10100 0.0012 0.606 0.791 0.000* 0.549 0.253

44–48 41939992–41949348 01001 0.0004 2.228 1.270 NA 0.000* 1.000

10001 0.0010 1.813 0.915 0.000* 0.104 1.000

47–51 41949301–41952774 00001 0.0048 1.881 1.407 0.046* 0.043* 0.000*

48–52 41949348–41952781 00010 0.0048 1.842 1.252 0.049* 0.040* 0.011*

49–53 41949359–41952838 00100 0.0048 1.900 1.293 0.049* 0.040* 0.161

50–54 41949479–41952852 01000 0.0047 2.000 1.449 0.032* 0.037* 0.299

51–55 41952774–41952898 10000 0.0045 2.163 1.838 0.023* 0.023* 0.218

Major allele is coded as 0. SNP# corresponds to the order of SNP in the gene among SNPs with MAF ≥0.001 and no more than 25 % missing genotypes. The
blocks shown in bold in the first column are reported in Table 1 also but for a different haplotype
Hap haplotype, Hap freq haplotype frequency (obtained from hapassoc); NA, this haplotype was not returned by haplo.glm as its frequency is below pooling
tolerance of 0.001
*Significant p value
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by at least 1 of the methods in 10 blocks. With LBL, we
found association in 1 block only (Table 3) in the region
covered by SNPs 11 to 15 (47956424 to 47969734 bp).
Table 4 shows that haplo.glm found association in nine
additional blocks in the regions formed by SNPs 2 to 13
(47910743 to 47958037 bp). However, haplo.score only
found one of these nine blocks to be significant (the
block starting with SNP 8). Hapassoc with pooling toler-
ance of zero converged in six blocks, and was significant
in three blocks starting with SNPs 7, 8, and 10. With a
pooling tolerance of 0.001, it converged in one more
block and the results were very similar to those of hap-
lo.glm. When we include age and its interaction in LBL,
age was significant, but none of the interaction terms
were significant. We did not find any significant association
using SKAT, SKAT-O, and SKAT-C whose p values are
0.717, 0.250, and 0.802, respectively.

False-positive rates
As described in the Methods section above, a null
scenario was created by permuting the case-control sta-
tus of subjects. In the following false-positive rates, the
denominator is the total number of haplotypes in all
haplotype blocks of a gene reported by each method and
the numerator is the number of haplotypes found to be
significant among them. Furthermore, for each method,
we report 2 rates in the order of ULK4 and MAP4 genes.
LBL: 10/510 = 2 % and 0/81 = 0 %; haplo.glm: 26/358 =
7.26 % and 3/72 = 4.16 %; haplo.score (individual haplo-
type test): 28/420 = 6.67 % and 0/74 = 0 %; haplo.score



Table 3 Significant haplotypes on MAP4 gene by LBL

SNP# in haplotype block Location Hap name Hap freq LBL (OR) LBL (BF) Haplo GLM
(p value)

Haplo score
(p value)

Haplo score
overall test
(p value)

11–15 47956424–47969734 10000 0.0041 2.467 3.190* 0.011* 0.010* 0.089

Major allele is coded as zero. SNP# corresponds to the order of SNP in the gene among SNPs with MAF ≥0.001 and no more than 25 % missing genotypes
Hap haplotype, Hap freq, haplotype frequency (obtained from hapassoc)
*Significant BF or p value

The Author(s) BMC Proceedings 2016, 10(Suppl 7):44 Page 367 of 415
(overall test): 8/66 = 12.12 % and 0/14 = 0 %. Note that
different methods report different numbers of haplo-
types in a block. Haplo.glm has smallest denominator as
it pools haplotypes with frequencies below 0.001 into 1
pooled haplotype. We don’t report this rate for hapassoc
as it does not converge in most cases. Also note that
strictly speaking, these rates are not correct estimates of
type I error rates as the tests for different haplotypes on
same/different blocks are not independent replications
of a single test. Nonetheless, these do give us an idea
about the true false-positive rates, at least qualitatively.
Discussion
We have found significant haplotype association on
ULK4 and MAP4 genes. Most of these are rare haplo-
types with frequencies less than 2 %. Because of pres-
ence of rare haplotypes, hapassoc did not converge most
of the time. Haplo.glm, with its minimum pooling toler-
ance of 0.001, gave the maximum number of significant
haplotypes, followed by haplo.score. However, we found
that these standard methods tend to give inflated false-
positive rates in the presence of rare haplotypes. We
have found this trend in our own simulations also using
different data sets (not presented here). Thus, caution is
warranted in treating the associated haplotypes shown
by these methods as true positive.
Table 4 Significant haplotypes on MAP4 gene by haplo.glm or hapl

SNP# in haplotype block Location Hap name Hap freq

2–6 47910743–47917263 00001 0.0011

3–7 47912703–47950634 00010 0.0011

4–8 47913380 –47951234 00100 0.0011

5–9 47913498–47951238 01000 0.0011

6–10 47917263–47951299 10000 0.0011

7–11 47950634–47956424 00001 0.3347

8–12 47951234–47957996 00010 0.3131

10–14 47951299–47963395 01010 0.2828

11–15 47956424–47969734 10100 0.2860

13–17 47958037–48040283 10000 0.2782

Major allele is coded as zero. SNP# corresponds to the order of SNP in the gene am
block shown in bold in the first column is reported in Table 3 also but for a differen
Hap haplotype, Hap freq haplotype frequency (obtained from hapassoc)
*Significant p value
On the other hand, we found that LBL maintains low
type I error rates in presence of rare haplotypes, and this
was also shown in previous studies including GAW18
simulated data [17–19]. So, the significant results from
LBL are more likely to be true positive, especially those
with a large BF. We also created haplotype blocks using
Haploview [26] based on the CEU (Northern Europeans
from Utah) population from the International Haplotype
Map Project (HapMap) Project Phase 3. Some of the re-
gions found to be significant by LBL fall in those blocks,
in particular, SNPs 4 to 6, 7 to 10, and 39 to 48 on the
ULK4 gene, and the significant haplotype on MAP4 gene.
On incorporating age and its interaction effects, LBL
found some interaction effects to be significant, whose
main effects were not significant in main effects only
model. However, the extension of LBL to incorporate co-
variates assumes haplotype-environment independence
[18], and this assumption may or may not be satisfied here
with age as covariate.
In the haplotype block consisting of SNPs 40 to 44 of

the ULK4 gene, the results across methods are somewhat
inconsistent. LBL gives some strong association signals
(with a BF >100) while haplo.score and haplo.glm results
for those specific haplotypes are insignificant even though
they identify some haplotypes that are not significant
using LBL (see Table 2). This may be partly a result of dif-
ferent ways of handling missing genotype data by different
o.score (in addition to those indicated in Table 2)

LBL (OR) LBL (BF) Haplo GLM
(p value)

Haplo score
(p value)

Haplo score
overall test
(p value)

0.358 1.095 0.000* 0.252 0.643

0.369 1.090 0.000* 0.252 0.412

0.358 1.102 0.000* 0.252 0.457

0.345 1.211 0.000* 0.252 0.411

0.345 1.113 0.000* 0.252 0.257

1.155 0.272 0.044* 0.065 0.097

1.175 0.368 0.029* 0.034* 0.203

1.156 0.250 0.048* 0.086 0.177

1.172 0.324 0.040* 0.058 0.089

1.169 0.312 0.047* 0.051 0.614

ong SNPs with MAF ≥0.001 and no more than 25 % missing genotypes. The
t haplotype
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software. In particular, 25 % of SNP 40′s genotypes are
missing. By default, hapassoc removes any individual with
more than 1 missing genotype; consequently, in this block,
60 individuals are deleted. The same deletions occur with
LBL as it uses pre.hapassoc output as its input. In contrast,
haplo.score and haplo.glm, by default, keep observations
with some (but not all) missing genotypes by considering
all possible pairs of alleles at those missing loci. There is an
option in haplo.glm to exclude persons with any missing
genotypes, which is not exactly the same as the hapassoc
default option although close to it. We ran haplo.glm with
this option for this block but found only 1 additional sig-
nificant haplotype (11000; p value = 0.023) in this region;
however, this haplotype was not one of the significant hap-
lotypes by LBL (see Table 1). Haplo.score lacks an option to
exclude persons with missing genotypes.
Here we considered a sliding window approach to ex-

plore the full gene. Alternatively, one can use a 2-stage
approach by first scanning the individual SNPs and then
following up with a haplotype analysis around the SNPs
that are significant at a certain level in the first stage.
We explored this approach by using PLINK [27] in the
first stage. With an arbitrarily chosen 5 % significance
level for the first stage, we found the SNPs at 41497081,
41504594, 41657184, 41841618, 41939990, 41949348,
and 47956424 to be significant. The last one is on the
MAP4 gene, and the rest are on the ULK4 gene. Com-
paring the results of this 2-stage approach with the re-
sults shown in Tables 1 and 3, we see that haplotypes
containing all of these SNPs (not necessarily the first
SNP in the block), except the SNP at 41841618, are
significant by LBL. Thus, the results from the 2 types of
analyses are similar. However, we note that single-SNP
analysis, by itself, does not show significance in these
regions, as the lowest p value of these 7 SNPs is 0.004;
consequently, none of them achieve genome-wide
significance.
We carried out all analyses on a 3.4 GHz Xeon proces-

sor under Linux operating system with 31.32 GB RAM.
For sliding window analysis of MAP4 gene, LBL takes
261 s, haplo.glm takes 53.83 s, and haplo.score takes
51.46 s. For ULK4 gene, LBL takes 2237 s, haplo.glm
takes 358.38 s, and haplo.score takes 325.39 s. Thus,
gene-wide sliding window haplotype analysis is compu-
tationally feasible as a follow-up tool even with LBL.
Finally, it is noteworthy that one of the most popular

collapsing method SKAT and its variants did not find
significance on either gene. This suggests increased
power of haplotype association methods over collapsing
methods and is consistent with literature [15], but this
issue needs to be evaluated fully through simulations.
However, our results illustrate that haplotype associ-
ation methods are useful and complement collapsing
approaches not only for genome-wide association
studies data but for sequencing data also, contrary to
popular belief.

Conclusions
Several haplotypes were found to be significant on the
ULK4 and MAP4 genes. In particular, the haplotypes found
to be significant by LBL are likely to be true positive as our
results show that it maintains a low false-positive rate.
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