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Abstract

Background: Nearly half of adults in the United States who are diagnosed with hypertension use blood-pressure-
lowering medications. Yet there is a large interindividual variability in the response to these medications. Two
complementary gene–environment interaction methods have been published and incorporated into publicly
available software packages to examine interaction effects, including whether genetic variants modify the
association between medication use and blood pressure. The first approach uses a gene–environment interaction
term to measure the change in outcome when both the genetic marker and medication are present (the “interaction
model”). The second approach tests for effect-size differences between strata of an environmental exposure (the
“med-diff” approach). However, no studies have quantitatively compared how these methods perform with respect to
1 or 2 degree of freedom (DF) tests or in family-based data sets. We evaluated these 2 approaches using simulated
genotype–medication response interactions at 3 single nucleotide polymorphisms (SNPs) across a range of minor allele
frequencies (MAFs 0.1–5.4 %) using the Genetic Analysis Workshop 19 family sample.

Results: The estimated interaction effect sizes were on average larger in the interaction model approach compared to
the med-diff approach. The true positive proportion was higher for the med-diff approach for SNPs less than 1 % MAF,
but higher for the interaction model when common variants were evaluated (MAF >5 %). The interaction model
produced lower false-positive proportions than expected (5 %) across a range of MAFs for both the 1DF and 2DF tests.
In contrast, the med-diff approach produced higher but stable false-positive proportions around 5 % across MAFs for
both tests.

Conclusions: Although the 1DF tests both performed similarly for common variants, the interaction model estimated
true interaction effects with less bias and higher true positive proportions than the med-diff approach. However, if rare
variation (MAF <5 %) is of interest, our findings suggest that when convergence is achieved, the med-diff approach
may estimate true interaction effects more conservatively and with less variability.
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Background
Hypertension—defined as an average systolic blood pres-
sure (SBP) of 140 mm Hg or higher or an average dia-
stolic blood pressure (DBP) of 90 mm Hg or
higher—affects approximately 30 % of American adults,
45 % of whom use antihypertensive medications for
blood pressure (BP) control [1, 2]. Broad interindividual
variability in responsiveness to antihypertensive medica-
tions suggests that genetics may modify response to
treatment [3, 4]. Furthermore, SBP and DBP are herit-
able, and candidate-gene and genome-wide association
studies have uncovered more than 50 loci associated
with BP [5–15]. Detection of genetic markers respon-
sible for differential pharmacologic response inform our
understanding of biological pathways relevant to hyper-
tension, as well as future interventions to reduce its
burden [16, 17].
Two complementary gene–environment (G × E)

interaction methods have been described in the lit-
erature to test G × E interactions such as differential
response to antihypertensives resulting from genetic
variation. The first method (the “interaction model”)
tests for interaction using a gene–environment inter-
action term to measure the change in outcome when
both the genetic marker and environmental factor
are present, as compared to when the genetic marker
is present but the environmental factor is not [18].
The second method (the “med-diff” approach) tests
for effect size differences between strata that differ
by environmental exposure [19]. Both methods can
estimate 1 degree of freedom (DF) tests of gene-
medication interactions as well as 2DF (or joint) tests of
these interactions and the genetic main effect using
publicly available software.
Although these methods have been assumed to be the-

oretically equivalent, no previous studies have directly
compared them. Therefore, in this study we aimed to
evaluate their performance by comparing both their
power to detect simulated interaction effects as well as
their false-positive proportions (FPPs) in family-based
data from the Genetic Analysis Workshop 19 (GAW19)
[20]. This was done by first calculating the true-positive
proportion (TPP) for the 1DF and 2DF tests using 3
coding variants at CYP3A43 of varying minor allele fre-
quencies (MAFs) with simulated genotype–medication
response interactions. We then used TPP to evaluate the
power to detect simulated main effects at MAP4 (the
simulated single nucleotide polymorphisms, SNPs, with
the largest proportion of variance explained in SBP,
MAF 2.7 %) using a 2DF test in each approach. Lastly,
we assessed the observed FPPs of each approach across
the odd-numbered chromosomes without simulated ef-
fect using both 1DF and 2DF tests using publicly avail-
able software.
Methods
Type 2 Diabetes Genetic Exploration by Next-generation
sequencing in Ethnic Samples (T2D-GENES) Consor-
tium Project [21] genotypic and GAW19 simulated
phenotypic data have been described separately [20]. The
GAW19 genotypic dosage data come from whole genome
sequence variants for 20 extended Mexican American fam-
ilies collected as part of the San Antonio Family Studies.
Imputation for missing SNP genotypes in pedigrees was
conducted using a likelihood-based method implemented
in MERLIN, based on the framework of available high-
density genome-wide SNP data [22]. The GAW19 con-
veners simulated 200 replicates of phenotypic data based
on the observed longitudinal data in the family-based sam-
ple. These data included 3 predicted deleterious coding
variants in CYP3A43 with simulated gene–medication in-
teractions in the absence of genetic main effects. We were
aware that carriers of these risk variants were assigned to
be nonresponsive to the simulated BP treatment effect on
SBP of −6.2 mm Hg (βInt = 6.2 mm Hg). Additionally there
were 984 SNPs with simulated genetic main effects for
SBP explaining between less than 0.1 % and 2.78 % of the
phenotypic variance.

Accounting for family relatedness and population
structure
We accounted for family relatedness using linear mixed
models using a Comprehensive Mixed Model Program
for Analysis of Pedigree and Population Data (MMAP)
[23, 24]. To account for population structure, we applied
principal component (PC) analysis to the observed geno-
typic data [21]. PCs were initially calculated in unrelated
founders (n = 117) and a subset of 28,156 SNPs were se-
lected for uniform coverage and low mutual linkage dis-
equilibrium (r2 ≤ 0.2). PCs were assigned to all other
individuals (n = 959) using estimated PCs from founders
and the predict function in R to compute each individ-
ual’s PC scores based on the individual’s genotypes
(www.R-project.org). We included the top 5 PCs in all
association analyses [25].

Gene–environment interaction analyses
Our analysis evaluated simulated SBP at the last time
point (t = 3), when both the prevalence of hypertension
and use of antihypertensive medications were the highest
[1]. We assessed the appropriateness of model-based SEs
by examining the heterogeneity of residuals by medica-
tion status using a likelihood ratio test to compare the
homogeneity model with the heterogeneity model, and
based on these results, our models allowed the residual
error term to differ by medication status (p ≥0.05). All
G × E analyses were adjusted for age, sex, population
structure, and relatedness. We filtered out any SNP that
exhibited a minor allele count of less than 2. The

http://www.r-project.org/
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characteristics of true-positive findings were investigated
at the 3 SNPs in CYP3A43 with simulated gene–medication
effects (1DF and 2DF tests), and the only SNP in MAP4
with a simulated genetic main effect (2.87 % variation in
SBP, chr3: 48040283, −9.91 mm Hg per minor allele) and
greater than 80 % estimated power using a 2DF test. The
FPP was calculated for the odd-numbered chromosomes
using SNPs beyond 500 kb of the simulated effects (gene–
medication effects for the 1DF tests, or simulated main and
interaction genetic effects for the 2DF joint tests). Both true
and false positives were considered statistically significant
using a p value criterion of less than 0.05. Based on the sim-
ulated prevalence of medication status and SBP distribu-
tion, we estimated the expected TPP using an approximate
effective sample size of 80 % of the total sample (n = 849),
to account for the nonindependence of relative pairs. Power
analyses were conducted using Quanto [26].

“Interaction model”
The interaction between the simulated genotypes and
BP medication status on SBP at t = 3 (equation 1) was
modeled to calculate the estimated interaction effect,
model-based SEs, and p values using MMAP [23]. The
1DF and 2DF joint tests (shown below) for this method
have been described by Manning et al. [18].

Model 1

SBPt¼3 ¼ α þ β
SNP

XSNP þ βMedXMed þ βIntXInt

þ βCXC þ g þ e

Where XInt = 1 when both XSNP and XMed are nonzero,
C represents adjustments for covariates (age, sex, PCs),
g ~N(σa

2R) is a polygenic random effect to account for
familial correlation through a relationship matrix, and e
~N(σe

2I) is the error term. The null hypotheses for X1DF

and X2DF are that βInt = 0, and βInt, βSNP = 0 jointly.

X1df ¼ βInt
2

Var βInt
� � eχ2 1ð Þ

X2df ¼ βSNP
βInt

� �T
Var βSNP

� �
Cov βSNP; βInt

� �

Cov βSNP; βInt
� �

Var βSNP

� �
� �−1

βSNP
βInt

� �
eχ2 2ð Þ

Medication-stratified, “med-diff” approach
To apply the med-diff approach to BP medication–stratified
results (Models 2a, b), we modeled the genetic main effect
within strata of BP medication status using MMAP [23].
Then the Spearman rank correlation coefficient between
strata for all SNPs (r, range across replicates and chromo-
somes: −0.13 to 0.16), magnitude, SE, and p value of the
difference were estimated using EasyStrata [27]. The 1DF
and the 2DF joint tests (shown below) have been described
by Randall et al. [19] and Aschard et al. [28].

Model 2a

SBPt¼3 ¼ α þ βSNPjMed¼1XSNPjMed¼1 þ βCXC þ g

þ e

Model 2b

SBPt¼3 ¼ α þ βSNPjMed¼0XSNPjMed¼0 þ βCXC þ g

þ e

Where C represents adjustments for covariates (age,
sex, PCs), and g and e are as in Model 1. The null hy-
potheses for Z1DF and X2DF are that βDiff = 0, and
βSNP|Med=1, βSNP|Med=0 = 0 jointly.

Z1df ¼
βðSNPjMed¼1Þ− βðSNPjMed¼0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
SNPjMed¼1ð Þ þ SE2

SNPjMed¼0ð Þ−2rSEðSNPjMed¼1ÞSEðSNPjMed¼0Þ
q

¼ βDiff
SEDiff

e N 0; 1ð Þ

X2df ¼ β2SNPjMed¼1

SE2
SNPjMed¼1

þ β2SNPjMed¼0

SE2
SNPjMed¼0

eχ2 2ð Þ

Results
The average age was 48.1 years (58 % female) with the
youngest and oldest participants across all replicates be-
ing 18 and 101 years old, respectively. The mean preva-
lence of BP medication use at the last simulated time
point was 32.7 % (range across replicates: 30.2 to
36.4 %). The average change in SBP in individuals who
initiated BP medication between the first and last time
points was −6.9 mm Hg. The average odd-numbered
chromosome-wide convergence was higher for the inter-
action model than for the med-diff approach (1DF: 8.0 ×
106 vs. 7.0 × 106’, 2DF: 6.5 × 106 vs. 5.7 × 106).

CYP3A43 true-positive gene–medication effects (1DF)
At the 3 SNPs at this locus the same replicates con-
verged in both G × E approaches (Table 1). Nonconver-
gence, caused by multicollinearity between the SNP and
interaction terms or the small stratified-sample size, in-
creased as MAF decreased for both approaches. The es-
timated interaction effects were slightly larger on
average for the interaction model (difference 0.26–
1.10 mm Hg) compared to the med-diff approach
(Table 1). Both approaches produced estimated effects
that varied across replicates, with the least-common
SNP (Fig. 1a–c) showing the most variability in effect
size. As compared to the simulated interaction effect of



Table 1 Power to detect true-positive gene–medication interactions at CYP3A43 using 2 approaches. Gene–medication interactions
(200 replicates) were simulated to be 6.2 mm Hg at 3 single nucleotide polymorphisms (SNPs) representing a range of minor allele
frequencies (MAFs) (0.1 to 5.4 %)

Interaction model Med-diff approach

βInt SEInt 1DF PInt 2DF PSNP, Int βDiff SEDiff 1DF PDiff 2DF PJoint

chr7:99457518-A (0.1 % MAF)

Mean 12.35 15.42 4.3E-01 3.4E-01 11.82 15.29 4.2E-01 3.3E-01

Min −21.90 14.55 1.3E-03 2.9E-04 −23.68 14.18 1.3E-03 6.1E-05

Max 51.85 16.69 1 9.9E-01 50.11 16.64 1 9.9E-01

Median 12.45 15.40 3.9E-01 2.4E-01 10.57 15.26 3.8E-01 2.3E-01

Replicates P <0.05 of 141 converged 12.1 % 17.0 % 13.5 % 18.4 %

chr7:99454482-G (0.8 % MAF)

Mean 5.20 8.61 4.5E-01 5.0E-01 4.10 8.25 4.3E-01 4.9E-01

Min −23.10 6.00 1.0E-03 2.3E-03 −24.83 5.96 1.4E-03 3.9E-03

Max 29.80 12.37 1 1 30.15 12.51 9.9E-01 9.9E-01

Median 5.45 8.37 4.5E-01 5.1E-01 4.76 7.88 4.2E-01 5.2E-01

Replicates P <0.05 of 190 converged 7.9 % 6.3 % 9.5 % 5.8 %

chr7:99457605-C (5.4 % MAF)

Mean 5.11 2.60 1.3E-01 7.5E-02 4.85 2.63 1.5E-01 7.3E-02

Min −3.20 2.30 1.9E-06 8.2E-06 −2.67 2.36 1.6E-06 2.8E-07

Max 13.44 2.92 9.8E-01 7.0E-01 13.59 3.02 9.9E-01 8.9E-01

Median 4.97 2.60 5.6E-02 2.2E-02 4.82 2.62 6.4E-02 2.0E-02

Replicates P <0.05 of 200 converged 47.5 % 66.0 % 43.5 % 66.5 %

β Effect estimate, DF degrees of freedom, Diff Difference, Int interaction, Joint Joint estimates of both interaction and main genetic effects, MAF minor allele
frequency, P p value, SE standard error
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6.2 mm Hg, the med-diff approach estimated this ef-
fect more conservatively on average than the inter-
action model, which resulted in less bias using the
med-diff approach for the rarest of the 3 SNPs (MAF
0.1 %, Table 1) and more bias for the other 2 SNPs
(MAF 0.8 % and 5.4 %). As would be expected, the
estimated mean SE decreased as the SNP became
more common (Fig. 1d–f ). Yet at the least-common
SNP with the poorest model convergence (MAF
0.1 %), the interaction and med-diff SE estimates were
less variable than another more frequent SNP at the
same locus (0.8 %, Table 1). Estimates of the 1DF and
2DF p values between the 2 approaches were compar-
able (Table 1, Fig. 1g–i). The TPPs identified using
1DF or 2DF tests were higher for the med-diff ap-
proach when the SNPs were less than 1 % MAF, but
higher or equivalent for the interaction model when
the SNP was common (MAF 5.4 %). The observed
TPPs were not statistically significantly different from
what we had estimated prior to the study (p ≥0.2)
with the exception of the least-common SNP (p
<0.02), which also did not converge for 30 % of the
replicates (59 of 200 replicates).
MAP4 true-positive main genetic effects (2DF)
At chromosome (chr) 3:48040283, the main genetic
effect was overestimated by both the interaction model
(−13.1 mm Hg) and the med-diff stratified analysis of
nonmedicated individuals (−13.3 mm Hg), whereas the
med-diff analysis of medicated individuals underesti-
mated the effect (−7.8 mm Hg). The 2DF joint p values
were comparable between the 2 approaches with TPPs
of 100 % (n = 156).

False-positive proportions (1DF, 2DF)
As shown in Fig. 2, the interaction model produced de-
flated FPPs in both the 1DF and 2DF tests, which
approached 5 % across bins of increasing MAF. In con-
trast the med-diff approach produced stable FPPs across
bins of MAF for both 1DF and 2DF tests. Both models
produced higher FPPs for 2DF tests as compared to 1DF
tests.

Discussion
Randall et al. [19] have argued that 1DF tests, such as
the interaction model and the med-diff approach, are
particularly useful for informing public health



Fig. 1 Comparison of the estimated effects (a–c), standard errors (d–f), and -log10 of the 1DF p values (g–i) on SBP from the interaction model
(x-axis) and med-diff (y-axis) approaches in up to 200 replicates of simulated gene–medication interactions at 3 SNPs at CYP3A43 (6.2 mm Hg,
dashed line in (a–c) of varying minor allele frequencies (MAFs)
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interventions by highlighting the nature by which the
environment may attenuate or exacerbate genetic predis-
position to disease susceptibility. Our preliminary results
thus far indicate that these 2 G × E approaches have not-
able differences with respect to the interaction effect
simulated herein. The interaction model may be better
at detecting true positive interactions than the med-diff
approach for common SNPs, but the med-diff approach
may estimate interaction effects more conservatively (i.e.
closer to the null) and with less variability at rare SNPs
(MAF <1 %). However, it is unclear how nonconver-
gence may be influencing these results.
The simulated GAW19 data set used in this analysis

did not contain any simulated interaction effects at loci
with simulated main genetic effects. Thus, using the
simulated GAW19 data we were unable to validate a
true positive with both main and interaction effects for
either approach (2DF test), which may limit the
generalizability of our findings. We were however able
to compare our ability to detect a strong main effect at
MAP4 using a 2DF joint test of main and interaction ef-
fects. Even though we expect that a 1DF test of the main
genetic effect would be a more powerful approach than a
2DF test when there is a true genetic main effect, this “true
positive” assessment may represent a real world application
of a 2DF test, wherein the investigator has no knowledge of
the underlying true effects and may be interested in asses-
sing the influence of potential interactions on established
genetic loci. Furthermore, unlike the med-diff approach
1DF test implementation, the published 2DF test imple-
mented in publicly available software does not account for
the potential for correlation between strata due to related-
ness. It is unclear how this may bias the observed 2DF re-
sults and methods comparisons made herein. Future work
warrants a more thorough investigation of these approaches
in family-based and unrelated data sets to detect associa-
tions at loci with both true main and interaction effects.
Based on our findings, the use of these G × E ap-

proaches on SNPs with less than 1 % MAF may lead to
unstable TPPs and FPPs. First, nonconvergence may



Fig. 2 Comparison of the false-positive proportions (FPPs) and 95 % confidence intervals for the interaction model (solid line) and med-diff
approaches (dashed line) and 200 replicates of true negative findings on the odd-numbered chromosomes using the 1DF (gray) and 2DF tests
(black) across bins of minor allele frequency (>0.1 to 50 %). Note: False-positive proportions were calculated after excluding SNPs at the CYP3A43
locus (chr7:98957518 to 99957518)
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plague the most moderate samplings of the data, allow-
ing the SEs to appear smaller than they really are and
TPPs higher than expected, as we had observed for the
least common CYP3A43 SNP (MAF 0.1 %). At the SNPs
examined at CYP3A43 and MAP4 we observed identical
convergence between the 2 approaches. Yet we observed
lower odd-numbered chromosome-wide convergence for
the med-diff approach than the interaction model, be-
cause all medication-stratified models must have con-
verged in order to apply the med-diff approach. Second,
we observed FPPs for the interaction model less than ex-
pected (5 %) for both 1DF and 2DF tests, which was not
the case for the med-diff approach. An analytic focus on
low-frequency SNPs (MAF 1–5 %) or common SNPs
(MAF >5 %) may minimize the observed difference in
the FPPs between the 2 approaches.

Conclusions
In this specific simulated example of gene-medication
interactions in family-based data the med-diff approach
exhibited greater power to detect interaction effects for
low-frequency variants (MAF <1 %), whereas the inter-
action model exhibited greater power for common al-
leles (MAF >5 %). However, the med-diff method
resulted in a stable but greater FPP for low-frequency
variants as compared to the interaction method. In sum-
mary, both approaches are robust for common variants
(MAF >5 %), but become less concordant as MAF de-
creases. One of the benefits of the stratified analysis of
the med-diff approach is that it is less computationally
intensive, but may not be appropriate for continuous en-
vironmental factors. This indicates that model selection
may in part be context-specific. Furthermore if rare vari-
ation is of interest in future investigations, our findings
here suggest that the med-diff approach may estimate
true interaction effects more robustly, with less variabil-
ity, and with stable FPPs around 5 % as expected; how-
ever, if common variants are the focus, the interaction
model may be more robust.
Future investigations should consider different types of

simulated interactions, for example, where genetic ef-
fects are in opposite directions in the 2 environmental
strata or where genetic effects differ in magnitude be-
tween strata (ie, when both interaction and main effects
are present). This current study used the GAW19 simu-
lated family-based data to fill a gap in the G × E litera-
ture and make quantitative comparisons directly
relevant to model choice in future effect estimation
(TPP) and discovery (FPP) studies in the field of genetic
epidemiology.
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