
PROCEEDINGS Open Access

Application of Bayesian networks to
GAW20 genetic and blood lipid data
Richard A. J. Howey and Heather J. Cordell*

From Genetic Analysis Workshop 20
San Diego, CA, USA. 4 - 8 March 2017

Abstract

Background: Bayesian networks have been proposed as a way to identify possible causal relationships between
measured variables based on their conditional dependencies and independencies. We explored the use of Bayesian
network analyses applied to the GAW20 data to identify possible causal relationships between differential
methylation of cytosine-phosphate-guanine dinucleotides (CpGs), single-nucleotide polymorphisms (SNPs), and
blood lipid trait (triglycerides [TGs]).

Methods: After initial exploratory linear regression analyses, 2 Bayesian networks analyses were performed. First, we
used the real data and modeled the effects of 4 CpGs previously found to be associated with TGs in the Genetics
of Lipid Lowering Drugs and Diet Network Study (GOLDN). Second, we used the simulated data and modeled the
effect of a fictional lipid modifying drug with 5 known causal SNPs and 5 corresponding CpGs.

Results: In the real data we show that relationships are present between the CpGs, TGs, and other variables—age,
sex, and center. In the simulated data, we show, using linear regression, that no CpGs and only 1 SNP were
associated with a change in TG levels, and, using Bayesian network analysis, that relationships are present between
the change in TG levels and most SNPs, but not with CpGs.

Conclusions: Even when the causal relationships between variables are known, as with the simulated data, if the
relationships are not strong then it is challenging to reproduce them in a Bayesian network.

Background
Genome-wide association studies (GWAS) have been very
successful at detecting genetic variants (typically single-
nucleotide polymorphisms [SNPs]) associated with pheno-
typic outcomes. A typical approach to understanding the
identified relationships between phenotype and associated
genetic factors is to use public databases to see if the
observed association can be explained by gene expression
or DNA methylation patterns in tissue types relevant to
the phenotype in question. However, public databases con-
tain measurements made in different individuals compared
to those used in the GWAS analysis, possibly even mea-
sured a different species. Consequently, there is interest in
using causal inference methods applied to measurements
of potential intermediate variables (such as gene expression

or DNA methylation) taken in the same set of individuals
as are included in the GWAS data set, allowing more
direct conclusions about causality to be made. With the
increase in different data types comes the desire to model
more complex causal relationships beyond using just 2 or
3 variables at a time. This is possible with the use of
Bayesian networks, where many variables can be modeled
simultaneously in an exploratory manner, providing a
natural extension to 3-variable causal modeling. In a recent
study, Ainsworth et al. [1] compared Bayesian networks
with other causal inference methods in the 3-variable situ-
ation, and found the Bayesian networks to perform competi-
tively. We here attempt to gain insight into the conditional
dependencies between the variables in the GAW20 data set
by fitting Bayesian networks (separately) to the GAW20 real
and simulated data. The GAW20 real data are based on a
previous study into the association between differential
methylation of cytosine-phosphate-guanine dinucleotides
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(CpGs) and the blood lipid trait, triglycerides (TGs),
which study found a region of the epigenome with 4
CpGs significantly associated with TGs. The GAW20
simulated data model the effect of a fictional drug that
affects TGs via both SNP and CpG effects, with methy-
lation of the corresponding CpG site modifying the
effect of the SNP on TG levels. These analyses were
performed with knowledge of the GAW20 “answers.”

Methods
Real data
The GAW20 real data [2] consisted of phenotype and
covariate data before and after fenofibrate drug treat-
ment for 3 weeks. Individuals had measurements taken
at 4 visits: visits 1 and 2 before treatment and visits 3
and 4 after treatment. Methylation measurements on
CpGs were taken at visits 2 and 4. In the Genetics of
Lipid Lowering Drugs and Diet Network (GOLDN)
study on which the GAW20 data was based, Irvin et al.
[3] performed an epigenome-wide association study
(EWAS) and found 4 CpGs in the same region of the
epigenome that were significantly associated with TGs.
We performed a similar EWAS to show that these 4

CpGs are significantly associated with TGs in the
GAW20 data at visits 2 and 4. From a total of 1105 indi-
viduals, 995 had methylation data at visit 2 and 530 at
visit 4. We used linear regression of the logged TG levels
(as TGs are approximately log-normally distributed),
and included covariates for the age, sex, and center
(Minneapolis or Salt Lake City):

log TGð Þ ¼ β0 þ β1CPG þ β2ageþ β3I1 centerð Þ
þ β4I2 sexð Þ þ β5pc1þ β6pc2þ β7pc3
þ β8pc4þ ϵ

where CPG is the methylation of the CpG being tested
and ϵ is a random error. The βis are regression coeffi-
cients and Ijs are indicator functions for the two discrete
variables. We included 4 principal components based on
the methylation data to account for potential biases such
as batch effects. We used the R software package [4] to
perform the tests, and did not account for family struc-
ture (relatedness between individuals) as obtaining ac-
curate P values for discovery was not the main aim of
our analysis.
We then used the data from the 4 CpGs that we and

Irvin et al. [3] found to be significantly associated with
TGs to fit a Bayesian network. We used the CpG data
taken at visit 2 (as this had a larger number of measure-
ments than data taken at visit 4) and data on age, sex, and
center. Following preliminary GWAS analysis between
SNPs and CpGs, and between SNPs and logged TG levels,
we did not find any convincing associations; consequently,
we did not include any SNPs in our Bayesian network

analysis. No CpGs at visit 2 (or visit 4) were associated
with change in TG levels as a result of drug treatment, so,
in contrast to the GAW simulated data analysis (described
later), we did not fit a Bayesian network modeling change
in TG levels (ie, TG levels after treatment, with TG levels
before treatment included as a covariate) as an outcome.
We implemented the Bayesian network method

given by Scutari and Denis [5], which was chosen as
being the most appropriate for mixed discrete and
continuous data. We used our own C++ implementa-
tion, BayesNetty [6], with a hill-climbing algorithm,
random restarts, and the Bayesian information criter-
ion for model selection. Categorical variables, sex and
center, are automatically constrained to have no par-
ents in the Bayesian network analysis. An “average
network” was also calculated by finding the best-fit
model 1000 times using bootstrapped data. The
strength of an edge was then given by the proportion
of networks where it was present in either direction.
The direction of the edge was given by the proportion
of times it was in a given direction when present.
The average network provides an estimate of the
direction of causality between variables. A strength
threshold was applied to network when it was plotted
so that only edges that are considered of interest are
plotted. The networks were drawn using the igraph
[7] R package.

Simulated data
The GAW20 simulated data was designed to model the
effect of a fictional drug on TG levels. The data was only
simulated for visits 3 and 4, with the real data at visits 1
and 2 forming the basis for the simulated data. We
viewed the documentation for the simulation that indi-
cated there were 5 causal SNPs, each with one nearby
corresponding CpG, that were used to simulate change
in TG levels between drug treatments. The simulation
method used CpG data at visit 4 to determine the
change in TG levels; consequently, we chose to use visit
4 CpG data in our analyses. We analyzed simulated data
replicate number 84 as suggested by the GAW20 orga-
nizers as the best representative replicate.
For our analysis, the SNP data was restricted to SNPs

with a minor allele frequency greater than 0.01 and the
CpG data was left unmodified. We attempted to find SNPs
associated with outcome using FaST-LMM (Factored
Spectrally Transformed Linear Mixed Model) [8] to ac-
count for family structure via the following mixed model:

log TG4ð Þ ¼ β0 þ β1TG2þ β2SNP þ β3age
þ β4I1 centerð Þ þ β5I2 sexð Þ þ ϵ

where ϵ is the random error, structured to account for
estimated relatedness, the βis are regression coefficients
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and Ijs are indicator functions for the two discrete vari-
ables. The TG levels at visits 2 and 4 are given by TG2
and TG4. By including TG2 as a covariate, we effectively
test for association with the change in TG levels be-
tween visits 2 and 4. The SNP data, SNP, are given by
the number of minor alleles, 0, 1, or 2.
An EWAS to detect CpGs associated with the change

in TG levels was also performed as follows:

log TG4ð Þ ¼ β0 þ β1TG2þ β2CPG4þ β3ageþ β4I1 centerð Þ
þβ5I2 sexð Þ þ β6pc1þ β7pc2þ β8pc3þ β9pc4þ ϵ

where CPG4 is the CpG level at visit 4 and other co-
efficients and variables are as previously. A Bayesian
network was fitted to the 5 causal SNPs and the 5
causal CpGs together with variables for age, sex, cen-
ter, and TG levels at visits 2 and 4. We obtained the
best-fit network as well as calculating an average net-
work using the same methods as before. The fitting
of the Bayesian networks was constrained such that
TG2 was a parent of TG4. With this constraint, the
change in TG levels between visits 2 and 4 can be
modeled. Also, SNPs were constrained to have no
parents and CpG data at visit 4 could not be parents
of TG2.

Results
Real data
Figure 1 shows the EWAS results from the GAW20 real
data at visits 2 and 4 and Table 1 shows the p values of
the 4 CpGs found by Irvin et al. [3]. The Bonferroni

corrected threshold is p = 1.08 × 10− 7, and at visit 2 and
visit 4 there are 4 and 2 CpGs meeting this significance
threshold, respectively. The differing sample sizes at visit 2
(995) and visit 4 (530) may contribute to these differences.
The family structure was not accounted for in our ana-
lysis, but nevertheless, the test results were not unduly in-
flated (quantile–quantile [Q-Q] plots not shown), with
genomic control inflation factors of 0.956 at visit 2 and
1.08 at visit 4.
The best-fit Bayesian network shown in Fig. 2a

shows connections between all the variables for the
GAW20 real data at visit 2. In particular, the CpGs
are strongly associated with one another, as would be
expected, as they are close to one another on the
epigenome and have similar EWAS results. Age and
sex, as well as CpG cg09737197, are shown to dir-
ectly influence TG level.
The average Bayesian network shown in Fig. 2b

provides a better estimate of the direction of causality
between variables. The line thickness of each arrow
indicates the strength (probability) that the edge ap-
pears in the graph at all (in either direction), and the
probability of the specified causal direction, given that
the edge exists at all, is given by the number dis-
played in red on each arrow. Values near 0.5 show
that the direction of causality is equally likely in
either direction and may reflect correlation rather
than implying causality. Although we may expect the
CpGs to be associated with one another, we would
not necessarily expect to be able to identify a causal
relationship between them (given that no SNPs have

Fig. 1 EWAS Manhattan plots for TG with age, center, sex, and 4 principal components as covariates using methylation data from visits 2 and 4.
Stars indicate the 4 candidate CpGs
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been included as “genetic instruments”), and this is
reflected in that most of the direction probabilities
are close to 0.5 (specifically 0.51, 0.51, 0.52, and
0.55), although 0.7 and 0.71 between cg01082498 and
two other CpGs is more indicative of a causal rela-
tionship than might be expected. Age has direction
probabilities of 0.82, 0.88, 0.91, and 0.95 to the CpGs,
suggesting a causal relationship, which is intuitive as
age should affect methylation rather than vice versa.
A possible argument that methylation could affect age
is that the sample of individuals is biased with regard
to methylation levels and age, for example, if individ-
uals who are old are only sampled if they have par-
ticularly high methylation levels (for whatever reason).
This would reflect causation in the sample rather
than in the population. The direction of causality be-
tween methylation and TG level is not strong in ei-
ther direction, with probabilities of 0.52 and 0.58
from CpGs to TG. Indeed, Sayols-Baixeras et al. [9]
found evidence of causality between methylation and
TGs going in either direction using the GAW20 data.

Simulated data
Figure 3 shows plots of the results of the GWAS and
EWAS. Q-Q plots of the results (not shown) did not
show any signs of inflation with genomic control in-
flation factors of 1.004 for the GWAS and 0.996 for
the EWAS. Only 1 SNP passed the Bonferroni cor-
rected threshold for significance (p = 7.67 × 10− 8) and
no CpGs were found to be significant from the
EWAS. Table 2 shows the results for the 5 “known”
causal SNPs and 5 corresponding CpGs together with
their simulated theoretical expected heritabilities at
stage 3 of the simulation, which, in the absence of
any epigenetic effects, reflects the SNP effect sizes in
relation to individual drug response. Given these rela-
tively small effects, and that CpGs operate not
through additional main effects but through modify-
ing the effect of the corresponding SNP, it is perhaps
not surprising that only 1 SNP and no CpGs were
found to be significant. An alternative explanation
could be the presence of unaccounted for confound-
ing factors; however, the detailed documentation for
the data simulation provided in the GAW “Answers”
suggests that there were no additional confounding
factors to be accounted for.
Figure 4a shows the best-fit Bayesian network and

largely reflects the GWAS and EWAS results, such
that most SNPs are related to a change in TG levels,
but the CpGs are not. The only corresponding SNP
and CpG connected to one another are rs1012116 and
cg18772399. The CpGs are connected to one another,
despite being randomly chosen across the epigenome

Fig. 2 Networks of candidate CpGs in the GAW20 data at visit 4 together with variables for TGs, age, sex, and center. Circles and rectangles show
continuous and discrete data respectively. a Best-fit Bayesian network. The thickness of the lines show the relative significance of the arrows. b
Average Bayesian network. The thickness of the lines show the relative strength of the arrows; numbers in red show the (probability of) direction
of the arrows

Table 1 The 4 CpGs identified by Irvin et al. [3] and their p values
from each EWAS on the GAW20 real data at visit 2 and visit 4

CpG Chromosome Position Visit 2 p value Visit 4 p value

cg00574958 11 68,607,622 6.11 × 10− 33 3.10 × 10−21

cg17058475 11 68,607,737 3.04 × 10−20 2.34 × 10−13

cg01082498 11 68,607,675 1.08 × 10− 11 3.16 × 10− 6

cg09737197 11 68,608,225 1.20 × 10− 9 3.27 × 10− 7
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on different chromosomes. This most probably reflects
that different individuals tend to show similar levels of
methylation across the whole epigenome, rather than
any other interesting characteristics related to the
drug-response simulation.
Figure 4b shows the average Bayesian network and

very similar results to the best-fit network but with
fewer arrows. After the strength threshold of 0.441 is
applied to the average network, the arrow showing
SNP rs4399565 relating to the change in TG levels is
no longer plotted, highlighting the weak association.
The strengths of edges (probability of a relationship
going in either direction) from rs9661059, rs736004,
rs1012116, rs10828412, and rs4399565 to the change
in TG levels are 0.538, 0.654, 0.640, 0.394, and 0.441,
respectively. It was suggested at the GAW20 workshop
that, given the nature of the simulated data, variables
for the interaction of SNPs and their corresponding
CpG may give stronger associations with change in
TG levels than are seen when modeling main effects
of SNPs and CpGs. However, further investigation

indicated that including such variables did not im-
prove the levels of association detected (results not
shown). The direction value of the arrows highlights
the constraints, such that the arrow must always be in
the shown direction if it is equal to 1. The direction
value between CpGs are not too close to 1, showing
there is not strong evidence for a causal relationship
in one direction.

Discussion
A simple EWAS of the GAW20 real data showed that
the 4 CpGs previously detected by Irvin et al. [3] as as-
sociated with TGs, were also associated in the GAW20
real data. This association and the high correlation be-
tween CpGs resulted in a fitted Bayesian network that
showed TG level to be dependent directly or indirectly
on all the other variables.
The GAW20 simulated data presented more difficul-

ties than the real data. From the GAW20 solutions it
was known in advance that 5 SNPs and 5 corresponding
CpGs were used to simulate change in TG. However, a

Table 2 The 5 SNPs and corresponding CpGs that were used to simulate change in TG levels between drug treatment in the
GAW20 simulated data with their simulated theoretical expected heritabilities and their GWAS and EWAS p values

SNP Chromosome Position Heritability SNP p value CpG CpG p value

rs9661059 1 230,556,033 0.125 1.08 × 10−8 cg00000363 0.0766

rs736004 6 5,067,728 0.075 0.0164 cg10480950 0.1229

rs1012116 8 89,466,383 0.100 0.00125 cg18772399 0.7496

rs10828412 10 23,476,515 0.025 0.000690 cg00045910 0.8427

rs4399565 17 13,407,619 0.050 0.0123 cg01242676 0.9250

Fig. 3 GWAS and EWAS of GAW20 simulated data for TG levels at visit 2, with age, sex, and center as covariates
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simple GWAS and a simple EWAS only detected one
of the SNPs. This can most probably be explained by
the small effect sizes and small sample size of the
data set, given that the 1 SNP detected had the lar-
gest effect size. Despite the complex nature of the
simulated data and the weak association results, we
did see some relationships between SNPs and a
change in TG levels.
There are many benefits to the use of Bayesian net-

works. A particular benefit is the identification of previ-
ously overlooked possible causal relationships between
variables in a biological system. Although not a rigorous
test of causality, they form a useful additional technique
to help direct further hypotheses about the system, as
well as future studies and analyses. Visualization of
Bayesian networks is a useful tool when there are many
different variables operating within a system to aid the
identification of interesting possible causal structures.
Bayesian networks do have some drawbacks, such

as needing to search through a potentially large net-
work space to find the best-fit network. The process-
ing time for this can be improved by reducing the
network space by imposing constraints between some
variables and/or by the use of parallel computing.
The optimality of the procedure can be improved
with the use of random restarts and the development
of different search algorithms.

Conclusions
The GAW20 real data showed stronger associations
between variables than the GAW20 simulated data,

resulting in a better-connected, fitted Bayesian net-
work. Despite some difficulties, Bayesian networks
provide a further tool beyond detecting individual
significant associations and may aid better under-
standing of biological systems to ultimately inform
drug development.
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