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Abstract

Background: DNA methylation is an epigenetic mechanism that has been proposed as a possible link between
genetic and environmental determinants of disease. Prior studies reported robust associations between the methylation of
specific cytosine-phosphate-guanine (CpG) sites and plasma lipids, namely triglycerides (TGs) and high-density lipoprotein
cholesterol (HDL-C). However, the causality of the observed association remains elusive, hampered by weak instrumental
variables for methylation status.

Aim:We present a novel application of the elastic net approach to implement a bidirectional Mendelian randomization
approach to inferring causal relationships between candidate CpGs and plasma lipids in GAW20 data.

Methods: We used DNA methylation, TGs, and HDL-C measured during the visit 2. Based on prior findings, we selected
5 methylation markers (cg00574958, cg07504977, cg06690548, cg19693031, and cg03717755) related to TGs, 2 markers
(cg09572125 and cg02650017) related to HDL-C, and 2 markers (cg06500161 and cg11024682) related to both traits. We
implemented an elastic net approach to improve the selection of the genetic instrument for the methylation markers,
followed by bidirectional Mendelian randomization 2-stage least-squares regression.

Results: We observed causal effects of blood fasting TGs on the methylation levels of cg00574958 (CPT1A) and cg06690548
(SLC7A11). For cg00574958, our findings were also consistent with the reverse direction of association, that is, from CPT1A
methylation to TGs.

Conclusions: Current evidence does not rule out either direction of association between the methylation of the
cg00574958 CPT1A locus and plasma TGs, highlighting the complexity of lipid homeostasis. We also demonstrated a
novel approach to improve instrument selection in DNA methylation studies.

Background
Fasting blood lipids are independent modifiable risk fac-
tors for cardiovascular disease, the leading cause of death
worldwide [1, 2]. Like many other complex traits, fasting
blood lipids have a heritable component, but known DNA
sequence variants only explain a small (< 12% cumula-
tively) proportion of their variation [3]. An emerging body
of evidence supports DNA methylation, which refers to
the addition of a methyl group to the DNA molecule, as a

more promising contributor to the missing heritability of
lipids [4–7]. For example, methylation of one locus in
CPT1A explained 11.6% of plasma triglyceride variation in
a prior epigenome-wide study in the Genetics of the Lipid
Lowering Drugs and Diet Network (GOLDN) [4].
In contrast to DNA sequence variants that are inherited

from parents and persist through the offspring’s lifetime,
methylation markers can be inherited as well as modified
by lifestyle and environmental factors [8]. Therefore, the
associations reported in previous cross-sectional epigen-
etic studies of fasting blood lipids have a variety of possible
causal interpretations [9]. One method to test the specific
causal scenarios (eg, lipids affecting methylation patterns
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or vice versa) is Mendelian randomization (MR), which
uses genetic markers (single-nucleotide polymorphisms
[SNPs]) as instrumental variables, taking advantage of the
natural randomization that occurs at conception [10].
A study by Dekkers et al. [7] implemented stepwise MR
to establish the causal effect of lipids on methylation;
however, the presented approach was not truly bidirec-
tional as it was limited in selecting instrumental variables
for methylation (ie, cis-methylation quantitative trait loci
[cis-meQTL]). Therefore, the reverse effect of methylation
on lipids has not been rigorously tested and cannot be
ruled out.
Using data from the GAW20, we aimed to fully inter-

rogate bidirectional relationships between plasma lipids
and methylation at 5 methylation markers related to
triglycerides (TGs), 2 related to high-density lipoprotein
cholesterol (HDL-C), and 2 related to both traits, with
selection based on prior evidence [6]. Furthermore, we
present a novel approach for selecting SNP proxies for
epigenomic variants, using GAW20 data to test the
potential of penalized regression, specifically elastic net
models, to identify cis-meQTL instruments.

Methods
Phenotypes and covariates
We used TGs and HDL-C measured during the visit 2
as the phenotypic traits of interest. Both traits were log
transformed to normalize their distributions. We selected
5 cytosine-phosphate-guanine (CpG) sites (cg00574958,
cg07504977, cg06690548, cg19693031, and cg03717755)
related to TGs, 2 CpG sites (cg09572125 and cg02650017)
related to HDL-C, and 2 CpG sites (cg06500161 and
cg11024682) related to both lipid measures in a previous
study from our group [6]. These CpG sites are located in
the genes CPT1A, SLC7A11, TXNIP, MYLIP, SYNGAP1,
PHOSPHO1, ABCG1, and SREBF1, and an intergenic
region on chromosome 10, respectively. During the ana-
lyses, we included age, sex, center, and smoking status as
fixed effects, and the family relatedness as a random effect.

Analysis pipeline
We applied the MR method to interrogate the causal
association between lipid traits and DNA methylation.
The MR method is predicated upon several assumptions:
(1) a reliable association between the genetic instrument
and the exposure; (2) associations between the instru-
ment and the outcome must only be mediated through
exposure; (3) no pleiotropic effects of the instrument [7, 11].
In the first step of our analysis, we investigated associations
between the selected CpG sites and the lipid traits of interest
in the GAW20 data. Second, we verified assumption (1) by
evaluating associations between a previously validated
polygenic risk score as an instrument for lipids (PRS-L)
[7] and DNA methylation in the GAW20 data set.

Third, we ensured that our polygenic risk score was not
associated with methylation other than through its
effect on lipid levels, testing assumption (2). To that end,
we fitted 2 models, adjusted and unadjusted, for the lipids
predicted by the PRS-L. Fourth, we investigated the possi-
bility of reverse causality using a polygenic risk score as an
instrumental variable for DNA methylation (PRS-M),
which we built using an elastic net approach (detailed
below), and testing its effect on lipids. Finally, we assessed
the net unmeasured pleiotropic effects [assumption (3)]
using the Egger test [12]. For a truly bidirectional approach,
we applied these steps in the opposite direction (from
methylation to lipids) for all CpG sites that met the
Bonferroni threshold (0.05/number of tests) in the first
step of the analysis.

Associations between DNA methylation and lipids
Using the nlme::R package [13], we fitted a linear mixed
model with DNA methylation beta score as the independent
variable and the lipids as the dependent variables, adjusting
for the covariates as described above. Methylation status of
specific CpG sites was deemed to be significantly associated
with lipids if the p values met the Bonferroni cutoff of
0.05/7 CpG sites = 0.0071.

Causal effects of lipids on DNA methylation
We evaluated the causal effects of lipids on DNA methyla-
tion using the two-stage least-squares (TSLS) approach
[10]. Briefly, TSLS comprises 2 regression stages. In the
first stage, the exposure (lipids) is regressed on the genetic
instrument (PRS-L) to obtain the values of the exposure
predicted by the genetic instrument (lipids|PRS-L). In
the second stage, the outcome (DNA methylation) is
regressed on the predicted values for the exposure
(lipids|PRS-L) from the first stage. Thus, in this second
regression, the causal coefficient is estimated [14].
First, we modified a previously validated genetic risk

score for lipids [7] based on the availability of its con-
stituent SNPs in GAW20 data. We used 20 available
SNPs on the GAW20 data, out of the 28 SNPs pro-
posed by Dekkers et al. [7]. Of these 20 SNPs, 8 were
genotyped in GAW20 and 12 were proxy SNPs selected
by SNAPtool with an r2 > 0.8 [15]. Once we selected the

SNPs, we built the PRS-L as
PN

i¼1
genotypei�ESi

meanðESÞ , where

genotype is the number of risk alleles carried at a given
locus, N is the number of SNPs used to build the
PRS-L, and ES is the effect size. We scaled the PRS-L
to obtain a mean of 0 and SE of 1.
Second, we applied the TSLS to estimate the causal

effects of lipids on DNA methylation. The first regression
was fit to test the association between PRS-L and lipids
using a linear mixed-model approach adjusted for the
covariates according to the following equation:
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predictL ¼ β0 þ β1 � PRS‐Lþ β2 � ageþ βa � sexþ β4 � center þ β5 � smokingþ β6 � family

(throughout this article, the single line over the text refers to fixed effects and the double line refers to random
effects).
The second regression model estimated the causal effect of circulating lipids on DNA methylation:

CpG site methylation

¼ β0 þ β1 � predictL þ β2 � ageþ β3 � sexþ β4 � center þ β5 � smoking

þβ6 � family

We also tested whether PRS-L was associated with methylation independently of predicted lipids using the
following model:

CpG site methylation

¼ β0 þ β1 � PRS‐Lþ β2 � ageþ β3 � sexþ β4 � centerþ β5 � smokingþ β6 � predictL
þβ7 � family

Causal effects of DNA methylation on lipids
To determine the causal effect of methylation on lipids, we followed the same TSLS approach, starting with selecting
the appropriate instrument for methylation. We selected all the SNPs located ±50 kb from the methylation marker
as possible cis-meQTL. Then we fitted the linear mixed models to obtain the residuals of the association between
methylation and the covariates as follows:

CpG site methylation

¼ β0 þ β1 � ageþ β2 � sexþ β3 � centerþ β4 � smokingþ β5 � family

Subsequently, we used an elastic net approach to find the SNPs associated with the methylation marker with a
coefficient that is statistically significantly different from zero. We set the elastic net algorithm to the following options:
alpha = 0.5, lambda = lambda.min obtained from the cross-validation model and the seed = “123”.
Elastic net model: CpG site methylation∗ = β0 + β1 ∗ SNP1 + β2 ∗ SNP2… + βn ∗ SNPn where CpG site methylation∗ is

the residual from the previous equation, and n refers to all the SNPs located ±50 kb from the CpG site that are not
directly on the probe.
We tested the relationship between our selected cis-meQTL and the CpG site methylation as follows:

CpG site methylation

¼ β0 þ β1 �meQTLþ β2 � ageþ β3 � sexþ β4 � center þ β5 � smokingþ β6 � family

Once the SNPs were selected, we created and standardized a PRS-M using the approach outlined in our description of
PRS-L above.
Subsequently, we applied the TSLS approach with lipids as the outcome to estimate the causal effect of DNA

methylation on lipids, and tested whether PRS-M was related to lipids independently of predicted methylation.
As the final step, we tested for net pleiotropic effects using the MR-Egger test implemented in the

MendelianRandomization:R package [16].
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Results
Associations between DNA methylation and lipids
After removing the individuals with missing data, 993
individuals remained in the analyses. Of all tested
CpG sites, five (cg00574958, cg11024682, cg07504977,
cg06690548, and cg06500161) were associated with
TGs (Table 1) and none were associated with HDL-C in
GAW20 data (data not shown). Consequently, all subse-
quent analyses were restricted to the TG phenotype.

Causal effects of lipids on DNA methylation
Data from 655 individuals were available for MR analyses.
The polygenic risk score for TG was robustly associated
with the trait and associated with methylation of 2
(cg00574958 and cg06690548) of the 5 CpG sites (see
Table 1). PRS-L was not associated with methylation of
these 2 loci independently of the predicted TG levels (data
not shown). PRS-L was not significantly associated with
the other CpG sites. Thus, those results do not support a
causal effect of TG on DNA methylation at cg07504977,
cg11024682, and cg06500161.

Causal effects of DNA methylation on lipids
We implemented the elastic net approach and created 2
PRS-Ms for cg00574958 (CPT1A; 3 SNPs), and cg06500161
(ABCG1; 5 SNPs) (see Table 1). The respective PRS-Ms
were associated with the methylation of the cg00574958

and cg06500161 sites (see Table 1). The predicted
methylation of the cg00574958 was associated with TG
(see Table 1), but predicted methylation of the cg06500161
was not associated with TG (p value = 0.47).

Pleiotropic effects
We tested the pleiotropy for the genetic instruments for
the cg00574958 (CPT1A) using the MR-Egger test, which
suggested no pleiotropic effect across the genetic variants
in PRS-L and PRS-M for cg00574958.

Discussion
Using GAW20 data, we assessed causal relations between
fasting blood lipids and methylation from lipids to methyla-
tion. We observed causal effects of lipids on 2 methylation
loci, but we could only investigate reverse causation for 1
locus because of the lack of appropriate instruments. The
estimated associations between methylation and lipids were
consistent with previous observational studies [4–6], but
our conclusions diverged from prior MR findings [7].
Specifically, we established that methylation levels of

cg00574958 (CPT1A) and cg06690548 (SLC7A11) can be
affected by circulating TGs. The largest study of lipid
epigenomics to date [7] also reported a causal effect of
TGs on the methylation of the CPT1A locus, but not
vice versa (ie, from cg00574958 methylation to TG). In
contrast, we present novel evidence for a causal effect of

Table 1 Summary of the statistically significant results in the GAW20 data

TG–DNA methylation

CpG Chr: Pos Gene Β SE p Value

cg06690548 Chr4: 139162809 SLC7A11 −0.97 0.07 2.99 × 10−4

cg07504977 Chr10: 102131013 NA 0.36 0.008 6.19 × 10−5

cg00574958 Chr11: 68607622 CPT1A −1.00 0.02 1.29 × 10−14

cg11024682 Chr17: 17730095 SREBF1 0.53 0.02 4.71 × 10−5

cg06500161 Chr21: 43656587 ABCG1 0.54 0.02 5.61 × 10−4

TG–PRS-L

Β SE p Value

PRS-L 0.05 7.68 × 10− 6 5.99 × 10−9

DNA methylation–Predicted TG

CpG Chr: Pos Gene Β SE p Value

cg06690548 Chr4: 139162809 SLC7A11 −0.05 2.86 × 10−4 2.84 × 10− 3

cg00574958 Chr11: 68607622 CPT1A −0.12 1.17 × 10− 3 3.97 × 10−4

DNA methylation–PRS-M

CpG Gene Β SE p Value

PRS-MCPT1A cg00574958 CPT1A 0.006 5.80 × 10−6 1.08 × 10−2

PRS-MABCG1 cg06500161 ABCG1 0.008 3.77 × 10−6 2.61 × 10−5

TG–Predicted Methylation

CpG Chr: Pos Gene Β SE p Value

cg00574958 Chr11: 68607622 CPT1A −2.36 0.37 1.28 × 10−4
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cg00574958 methylation on fasting TGs. Our compre-
hensive bidirectional approach was enabled by a novel
application of elastic net models to create a comprehensive
polygenic methylation score. Although we were able to
replicate and expand on the CPT1A finding, we did not
detect other previously reported causal effects, possibly as
a result of our smaller sample size: TG ➔ cg11024682 and
TG/HDL ➔ cg06500161 [7]; additionally, we did not have
robust genetic instruments to interrogate DNA methyla-
tion effects on lipids for other loci.
All 2 regions harboring CpG sites that emerged as

causally associated in our analyses have extensive bio-
logical implications for lipid homeostasis. CPT1A en-
codes the liver isoform of carnitine palmitoyltransferase
1, a key enzyme in the fatty acid metabolism pathway;
the cg00574958 locus specifically has been linked to
plasma lipid levels [4–7] and lipoprotein subfractions
[17]. In the same way, the SLC7A11 (Solute carrier
family 7 member 11) has been related to TGs [6, 7] and
it has an important role protecting cells from oxidative
stress [18].

Conclusions
To conclude, we cannot rule out either direction of
association between DNA methylation loci (namely in
CPT1A) and TG blood levels, illustrating the complexity
of biological regulation of lipid traits. Our findings likely
paint only a part of the underlying causal picture. We did
not have strong genetic instruments to test reverse
causation for other lipid-associated CpG sites, highlighting
the limitations of MR. Future studies should consider
expanding the regions included in the elastic net (eg,
to ±100 kb) and integrating publicly available bioinformatics
data to improve the capture of cis-meQTLs to create robust
genetic instruments for DNA methylation.
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