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Abstract

Triglycerides are an important measure of heart health. Although more than 90 genes have been found to be associated
to lipids, they only explain 12 to 15% of the variance in lipid levels. Evidence suggests that age may interact with the
genetic effect on lipid levels. Existing methods to detect the main effect of rare variants cannot be readily applied for
testing the gene environment interaction effect of rare variants, as those methods either have unstable results or inflated
Type I error rates when the main effect exists. To overcome these difficulties, we developed two statistical methods:
testing of optimally weighted combination of single-nucleotide polymorphism (SNP) environment interaction (TOW-SE)
and a variable weight TOW-SE (VW-TOW-SE) to test the gene environment interaction effect of rare variants by grouping
SNPs into biologically meaningful SNP-sets (SNPs in a gene or pathway) to improve power and interpretability. The
proposed methods can be applied to either continuous or binary environmental variables, and to either continuous or
binary outcomes. Simulation studies show that Type I error rates of the proposed methods are under control. Comparing
the two methods with the existing interaction sequence kernel association test (iSKAT), the VW-TOW-SE is the most
powerful test and the TOW-SE is the second most powerful test when gene environment interaction effect exists for both
rare and common variants. The three tests were applied to the GAW20 simulated data, among the five regions in which
the main effect of common SNPs was simulated and the gene–age interaction effect was not included. As expected,
none of the tests indicated positive results.

Background
Highly heritable triglycerides (TG) [1] are an important
measure of heart health. Having excess levels of TG can in-
crease the risk of heart disease. Identified common variants
only explain 12% to approximately 15% of the variance in
lipid levels [2]. A substantial proportion of lipid heritability
is unexplained [3]. This suggests that rare (minor allele fre-
quency [MAF] < 1%) or intermediate variants (0.01 <MAF
< 0.05) with potentially larger effect sizes or other mecha-
nisms, such as gene–environment interactions, may play a
role in explaining the substantially missing heritability.
Clear evidence shows that lipids vary by age. A handful of

lipid loci with age-dependent effects were identified from
candidate gene studies and genome-wide association study
(GWAS) [4, 5]. However, few of these explored the role of

gene–age interaction for rare and intermediate variants in
lipid levels. More than 74.6% of variants are rare and inter-
mediate variants [6], which may have a larger effect size
than common variants and explain substantial proportions
of lipid variance. In this GAW20 study, we attempted to de-
tect the effect of gene–age interactions on TG for rare and
intermediate variants with novel statistical methods.
Due to the allelic heterogeneity and the extreme rarity of

individual variants [7], most existing methods focus on im-
proving the power of detecting gene–environment (G × E)
interactions only for individual markers, especially for com-
mon variants, and are not optimal for detecting rare vari-
ants. Although there has been interest in multiple-marker
analysis by grouping single-nucleotide polymorphisms
(SNPs) into biologically meaningful SNP-sets (eg, SNPs in a
gene or pathway) to improve power and interpretability,
the existing SNP set analysis has focused on testing for the
marginal effect of a SNP set [8, 9]. Limited work has been
done on testing the interactions between a SNP set and an
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environmental variable, especially as it pertains to rare vari-
ants. Although the SNP-set–based interaction sequence
kernel association test (iSKAT) [10] can be applied to de-
tect G × E interactions in rare variants, its power is very re-
stricted and lacks robustness to the shape of the data in
many circumstances. Motivated by the need for powerful
methods to test G × E interactions for rare variants, we de-
veloped two novel methods: testing of optimally weighted
combination of SNP environment interaction (TOW-SE)
and a variable weight TOW-SE (VW-TOW-SE) to identify
G × E interactions for SNP sets of common and/or rare var-
iants in GWAS, exome, or next-generation sequencing
data. Our simulation studies show that the Type I error
rates of the proposed methods are under control. Compar-
ing the two methods with the iSKAT, and the VW-TOW-SE
is the most powerful test, TOW-SE is the second most
powerful test when G×E interaction effect exists for both
rare and common variants.
The Genetic Analysis Workshop (GAW) 20 “Simula-

tionBestOneRepresentative” data includes TG levels be-
fore and after treatment with fenofibrate and genotyped
genome-wide SNPs from the Genetics of Lipid Lowering
Drugs and Diet Network (GOLDN) study [11]. We im-
puted chromosomes 1, 6, 8, 9, 10, and 17, where five
major main-effect causal SNPs of TG reside. We applied
the proposed methods (TOW-SE and VW-TOW-SE)
and iSKAT to the unrelated individuals (sample size n =
246) to test TG susceptible to gene–age interactions on
the five imputed genes. The main effect of common SNP
was simulated in the five regions. However, the gene–
age interaction effect was not included. As expected,
using the proposed methods, none of the regions indi-
cated significantly gene–age interaction effects on TG.

Methods
Consider a sample of n individuals. Each individual has
been genotyped at M variants in a genomic region (a gene
or a pathway). For the ith individual, denote yi as the trait
value (continuous or binary); Ei as the environmental vari-
able (continuous or binary); Gi = (gi1,⋯, giM) as the geno-
typic scores at M variants, where gim ∈ {0, 1, 2} is the
number of minor alleles the ith individual has at the mth

variant. Zi denotes the potential confounder covariates.
We use the generalized linear model (GLM):

ð1Þ

to model the relationship between trait values and G × E
interactions EiGi, where f (∙) is a monotone “link” function.
For a quantitative trait, f (∙) will be an identity link func-
tion. For a binary trait, a logit link function will be used.
Coefficients of each term in Eq. (1) are denoted by α0, a,

β, Ϛ, and η, respectively. To test for the G × E interaction
for a SNP set of M SNPs is equivalent to testing the null
hypothesis H0 : β = 0 in Eq. (1).
To test H0 : β= 0 in Eq. (1), we developed a score test by

treating α0, a, Ϛ, and η as nuisance parameters. First, we ad-
justed both trait value yi and G×E interaction EiGi for the
covariates Zi, the genotypic score Gi and the environmental
variable Ei by applying linear regression and obtaining resid-
uals. Denote ~yi as the residual of yi and ~Xi ¼ ð~xi1;⋯; ~xiMÞ
as the residual of EiGi. Then, the relationship between ~yi and

~Xi ¼ ð~xi1;⋯; ~xiMÞ can be modeled by the GLM:

f Eð~yij~XiÞ
� � ¼ β0

� þ ~Xiβ
� ð2Þ

To test Ho : β = 0 in equation (1) is equivalent to test Ho :
β∗ = 0 in equation (2). Sha et al. [12] proposed a score test
to test Ho : β

∗ = 0 in GLM. However, for rare variants’ SNP–
environment interactions, the score test may lose power as
a consequence of the sparse data and a large degree of free-
dom. To increase power by effectively using information
from data, we proposed to test the G × E interactions
by testing the effect of a weighted combination of

SNP–environment interactions, ~xi ¼
P
m¼1

M
wm~xim:

To test ~xi ¼
P
m¼1

M
wm~xim, the score test is:

Sðw1;⋯;wMÞ ¼ n
ðPn

i¼1ð~yi−~yÞð~xi−~xÞÞ2X
n
i¼1ð~yi−�~yÞ2

Xn

i¼1
ð~xi−�~xÞ2

¼ n
ðPM

m¼1wm
Pn

i¼1ð~yi−�~yÞð~xim−�~xmÞÞ
2

X
n
i¼1ð~yi−�~yÞ2

Xn

i¼1
ð~xi−�~xÞ2

ð3Þ

It reaches its maximum Soðw0
1;⋯;w0

MÞ ¼ n
P
i¼1

n
ð~yi−~yÞ

ð~x0i −~x
0Þ=

Xn

i¼1
ð~yi−~yÞ

2
when w0

m ¼

Xn

i¼1

ð~yi−�~yÞð~xim−�~xmÞ
Xn

i¼1

ð~xim−�~xmÞ2
;

~x0i ¼
P
m¼1

M
w0
m~xim; as rare variants are essentially inde-

pendent. Thus, w0
m is the optimal weight. We define

TT−SE ¼ P
i¼1

n
ð~yi−~yÞð~x0i −~x

0Þ as the statistic to Test the

effect of the Optimally Weighted combination of
SNP-Environment interactions (TOW-SE), which is
equivalent to Soðw0

1;⋯;w0
MÞ when we use a permuta-

tion test to evaluate p-values.
We analytically derive optimal weights for TOW-SE.

The optimal weight w0
m will put a big weight to SNP–en-

vironment interactions that have strong association with
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the trait of interest and also adjust the direction of the
association. Moreover, it will put big weights to SNP–en-
vironment interactions with small variations that are
often rare variants. iSKAT assigns weights to variants
based on the MAFs via a beta function. It put decent
nonzero weights for variants with MAF in (0.01, 0.05). If
MAFs of causal variants are not in the range of (0.01,
0.05), iSKAT will be less powerful than TOW-SE.
TOW-SE targets rare variants and may lose power when
testing G × E effects of both rare and common variants.
To test for the G × E interaction of both rare and com-

mon variants, we propose variable weight TOW-SE
(VW-TOW-SE). We divide variants into rare and com-
mon. Let Tr and Tc denote the test statistic of TOW-SE
for rare and common variants, respectively. Let Tλ ¼ λ

Trffiffiffiffiffiffiffiffiffiffiffiffiffi
varðTrÞ

p þ ð1−λÞ Tcffiffiffiffiffiffiffiffiffiffiffiffiffi
varðTcÞ

p : Denote pλ as the p-value of

Tλ. The test statistic of VW-TOW-SE is defined as TVW

− T − SE = min0 ≤ λ ≤ 1pλ. We will use permutations to
evaluate p-values of both TT − SE and TVW − T − SE.

Simulations
Following the simulation setting in Lin et al. [10], we con-
ducted simulation studies using the GAW17 empirical
mini-exome sequenced data. The data set contains geno-
types of 697 unrelated individuals on 3205 genes. Research
shows that SNP rs11583200 on gene ELAVL4 is associated
with body mass index [13] and rare variants on gene
ELAVL4 are associated with the quantitative trait Q1 in the
GAW17 data [14]. Therefore, we chose gene ELAVL4 in our
simulation study. There are 10 variants on gene ELAVL4 of
which 8 are rare variants and 2 are common variants. The
rare variants threshold was chosen as 0.01. We use the pro-
gram fastPHASE [15] to infer haplotypic phase for the 697
individuals and calculate haplotype frequencies. To generate
the genotype of an individual, we generate 2 haplotypes ac-
cording to the haplotype frequencies. The quantitative trait
was generated using the following model:

Y ¼ 0:5Z1 þ 0:5Z2 þ Eα1 þ GTα2 þ EGTβþ EGcB
c þ ϵ

ð4Þ

where Z1~N(0, 1); Z2~Binomial(1, 0.5) and ϵ~N(0, 1).The
environmental variable E is assumed to be continuous fol-
lowing standard normal distribution and we set α1 = 0.015;
EG is the rare variants G × E interaction and EGc is one
common variant G × E interaction.

Table 1 Type I error rates for both rare and common variants in
the presence of main effects (top panel) and in the absence of
main effects (bottom panel) for n = 2000

α-level TOW-SE iSKAT VW-TOW-SE

With main effect

n = 2000 0.050 0.050 0.055 0.059

0.010 0.011 0.012 0.015

0.001 0.000 0.001 0.000

Without main effect

n = 2000 0.05 0.051 0.061 0.056

0.01 0.011 0.013 0.009

0.001 0.000 0.003 0.001
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Fig. 1 Power comparisons of three tests (TOW-SE, iSKAT, VW-TOW-SE) for
n = 2000 at α=0.05 level of significance for testing both rare and common
variant G× E interaction effects on a continuous outcome with main effect
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Fig. 2 Power comparisons of three tests (TOW-SE, iSKAT, VW-TOW-SE)
for n = 2000 at α = 0.05 level of significance for testing both rare and
common variant G × E interaction effects on a continuous outcome
without main effect
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We consider two scenarios: (a) with main effect and (b)
without main effect in the model (4). When there are no
main effects, we set the magnitudes of vector α2 = 0.3 for
each element and their signs are randomly sampling from
(−1, 1). When there are no main effects, we set α2 = 0. To
evaluate the Type I error, we set β and βc all to 0. To
evaluate power, we vary the number of non-zero ele-
ments βj in β. We set the magnitude of the nonzero
βj as |βj| = c, and increase c from 0.02 to 0.1. Of
the βj, 50% are positive. βc is positive and twice the
magnitude of βj. The sample size is 2000 for each
scenario. P values are estimated by 10,000 permuta-
tions. The Type I error rates and power are evaluated
using 1000 replicated samples.

GAW20 data analysis
We applied TOW-SE, VW-TOW-SE, and iSKAT to the
GAW20 “SimulationBestOneRepresentative” data, which
includes TG levels before and after treatment with
fenofibrate and genotyped genome-wide SNPs from the
GOLDN project [11]. We imputed chromosomes 1, 6, 8,
9, 10, and 17 with minimac2 software [16]. Five major
main effect causal SNPs (rs9661059, rs736004 [LYRM4],
rs1012116, rs10828412, and rs4399565 [HS3ST3A1]) of
TG reside on chromosomes 1, 6, 8, 9, 10, and 17, respect-
ively. The 1000 Genomes project haplotypes integrated
phase I served as the reference panel. It includes 1092 indi-
viduals. Our analysis was based on 246 unrelated individ-
uals. Both pre-treatment and post-treatment TG values
were provided for two visits. We used the log ratio of the
pre-treatment mean and the post-treatment mean as the
phenotype trait in our G × E interaction analysis. For indi-
viduals who did not have two visits, we just used the exist-
ing value. The median age is 64 years (range: 28–83 years).
We used the centered age in our analysis. The median of
the TG ratio is 1.54 (range: 0.72–4.24). We excluded 8 indi-
viduals from our analysis because of completely missing
post-treatment TG values.
We evaluated the performance of TOW-SE,

VW-TOW-SE, and iSKAT by testing G × E interaction
effect on TG for the aforementioned 5 regions. Each re-
gion consists of 10 SNPs, and the fifth SNP in each re-
gion is the major main effect causal SNP of TG.
Additionally, we assessed the effect of region size on the
power of the tests using the region of rs4399565.

Results
Table 1 shows that the Type I error rates of all the three
methods are under control. Power comparisons of the
three tests (VW-TOW-SE, TOW-SE, and iSKAT) for
different values of G × E effect for rare and common
variants are given in Fig. 1 (with main effect) and Fig. 2
(without main effect). The power of the three tests
increases as the effect size increases. When there is a
G × E interaction effect for both rare and common vari-
ants, VW-TOW-SE is the most powerful test and
TOW-SE is the second most powerful test. Table 2
shows that the median of the MAF ranges from 0.003
to 0.013 in the 5 regions. When we apply the three tests
to test G × E interaction effect, under Bonferroni cor-
rection, none of the regions are significantly associated
with TG. Table 3 suggests that all of the three methods
perform better when the region size is larger.

Discussion
The computation time for TOW-SE and VW-TOW-SE
using 10,000 permutations for analyzing 1000 individ-
uals in a region that includes 50 SNPs is 9 s and 20 s,
respectively. Suppose a whole genome sequencing data
with 13,498,188 SNPs, TOW-SE will take 674 h
(28 days) to conduct a whole genome analysis. The
effect analysis of the region size suggests that the three
methods will perform better when the region size is
larger. However, the larger the region size, the higher
chance for collinearity to appear in the region, which makes
the computation more complex. To minimize the problem
of collinearity, we recommend a region size between 10
SNPs and 30 SNPs when we apply the proposed methods to
a genome-wide scan.

Conclusions
In summary, we developed two novel statistical methods:
TOW-SE and VW-TOW-SE by grouping SNPs into

Table 2 Results of testing G × E interaction in the five causal regions using the three methods

Region name (SNP set) Median of MAF (range) PTOW-SE PiSKAT PVW-TOW-SE

rs736004 0.013 (0.001–0.387) 0.020 0.022 0.019

rs1012116 0.015 (0.002–0.167) 0.024 0.030 0.021

rs4399565 0.006 (0.001–0.449) 0.022 0.023 0.019

rs9551059 0.007 (0.001–0.275) 0.031 0.030 0.037

rs10828412 0.003 (0.001–0.394) 0.100 0.099 0.095

Table 3 Region size effect analysis for the three methods based
on the region of rs4399565

Region size Median of MAF (range) PTOW-SE PiSKAT PVW-TOW-SE

10 SNPs 0.006 (0.001–0.449) 0.022 0.023 0.019

20 SNPs 0.008 (0.001–0.449) 0.014 0.018 0.015

30 SNPs 0.008 (0.001–0.449) 0.013 0.014 0.012
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biologically meaningful SNP-sets, which improved power
and interpretability. Simulation studies show that the
proposed methods yielded well-controlled Type I error
rates under all study conditions. When gene environ-
ment interaction effect exists for both rare and common
variants, VW-TOW-SE is the most powerful test,
TOW-SE is the second most powerful test, and iSKAT is
the least powerful test.
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