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Abstract

Genome-wide association studies have helped us identify a wealth of genetic variants associated with complex
human phenotypes. Because most variants explain a small portion of the total phenotypic variation, however,
marker-based studies remain limited in their ability to predict such phenotypes. Here, we show how modern
statistical genetic techniques borrowed from animal breeding can be employed to increase the accuracy of
genomic prediction of complex phenotypes and the power of genetic mapping studies.
Specifically, using the triglyceride data of the GAW20 data set, we apply genomic-best linear unbiased prediction
(G-BLUP) methods to obtain empirical genetic values (EGVs) for each triglyceride phenotype and each individual.
We then study 2 different factors that influence the prediction accuracy of G-BLUP for the analysis of human data:
(a) the choice of kinship matrix, and (b) the overall level of relatedness. The resulting genetic values represent the
total genetic component for the phenotype of interest and can be used to represent a trait without its environmental
component.
Finally, using empirical data, we demonstrate how this method can be used to increase the power of genetic mapping
studies. In sum, our results show that dense genome-wide data can be used in a wider scope than previously anticipated.

Background
Genomic prediction (GP) refers to the use of genomic
information for predicting an individual’s phenotype [1].
Several different approaches have been developed with
the purpose of performing GP, such as marker-assisted
selection (MAS) and genomic-best linear unbiased predic-
tion methods (G-BLUP) [2]. MAS approaches have been
widely successful when single genomic variants affect the
trait of interest, but remain limited in their predictive cap-
abilities for complex phenotypes [3]. Evidence suggests that
complex traits are influenced by many genes, with effects
that often fall below statistical significance thresholds [4].
As a consequence, the combined effects of variants identi-
fied through association only explains a small portion of the
interindividual phenotypic differences [5]. G-BLUP–based

methods, on the other hand, are not heavily influenced by
statistical power, and have shown strong predictive power
[6]. Traditionally, G-BLUP uses genomic relationships (ie,
kinship) to estimate the empirical genetic value (EGV) of
an individual. EGVs are increasingly being used in human
genetic research, as they open the possibility of develop-
ment of truly personalized medicine [7].
The generation of reliable EGV estimates constitutes

one of their most important properties for the potential
use of GP. Findings from the field of animal breeding
strongly suggest that accuracy of GP can occasionally
be low, and that the accuracy in relatedness estimates
significantly affects the reliability of EGVs [8]. While
pedigree kinship estimates have traditionally been the
preferred measurement of relatedness, recent years
have seen increased use of empirical kinships calculated
from dense genome-wide data. Empirical kinships have the
advantage of capturing distant relationships, preventing
the exclusion of individuals with no genealogical record,
and being less dependent on theoretical expectations [9].
The different kinship estimates, however, have not been
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properly compared using human data in terms of their
reliability in the context of GP.
Here, using the distributed GAW20 data [10], we

study 2 factors that affect the prediction accuracy of
G-BLUP for the analysis of human data: (a) the choice
of kinship matrix, and (b) the overall level of relatedness.
We begin by describing the quality control methods used
on the GAW data set. We then describe and compare 3
different kinship matrices in terms of the reliability of
their EGV estimates, using analytical methods. We then
assess whether overall levels of relatedness influence the
accuracy of EGV estimates. With this analysis, we show
that family data, together with the use of empirically
derived kinship estimates, might increase the accuracy of
GP of complex traits. Our results also show that G-BLUP
methods might be used to increase the power of genetic
linkage studies.

Methods
Initial processing
All of the analyses were done using the entirety of the
distributed GAW20 dataset. The initial GAW20 pheno-
type data file (1102 individuals) presented 4 triglyceride
(TG) measurements (trr1 to trr4), representing TG levels
at 4 different time points, 2 pre- and 2 post-fenofibrate
intervention. To reduce the effects of measurement error,
pre- and posttreatment TG replicates were averaged. The
resulting file was, together with the pedigree file, con-
verted to SOLAR (Sequential Oligogenic Linkage Analysis
Routines) format [11].
The physical coordinates for GAW20 genotypes were

converted to release 19 of the human genome (hg19)
from UCSC. PREST-Plus [12] was then used to identify
erroneous samples recorded in the pedigree relationships.
This curated data set was posteriorly converted to input
formats for 2 widely used software packages, LDAK [13]
and IBDLD [9].

Pedigree and empirical kinships
Pedigree kinship estimates were obtained from the
original pedigree data file using SOLAR. Two different
empirical kinship matrices were then calculated from
the curated genotype data using LDAK version 4.9 and
IBDLD version 3.33. Both software packages attempt to
account for the linkage disequilibrium (LD) present in
dense genotype data. However, they differ in how they
account for LD. IBDLD uses a hidden Markov model to
estimate identity-by-descent probabilities conditional on
multilocus genotype information. LDAK, on the other
hand, assesses local patterns of LD prior to kinship esti-
mation, and then uses that information to give each
single-nucleotide polymorphism (SNP) a specific weight
during kinship calculations that accounts for the extent
to which the genetic signal is replicated by its neighboring

SNPs. The empirical kinship estimates from LDAK and
IBDLD were both weighted and scaled, ensuring the
diagonal elements were equal to 1.

G-BLUPs
The pre- and posttreatment TG levels, and relevant covari-
ates (age, sex, study center, and smoking) were exported to
TASSEL [14] together will all 3 kinship matrices. G-BLUPs
based on each of the 3 matrices were then calculated using
the Genomic Selection function. G-BLUPs are calculated by
solving the mixed model equation:

y ¼ Xbþ Zuþ e

where, y is a vector of phenotypic observations; b is a
vector of fixed effects with design matrix X; u is a vector
of random polygenic effects (EGV) with design matrix Z;
and e is a vector of residual effects. There are 2 important
features of G-BLUP worth noting. First, the variance
structure of u is proportional to the relationship matrix
and, therefore, we should expect u to be directly affected
by kinship estimates. Second, G-BLUP does not directly
make assumptions regarding the number of loci under-
lying the traits of interest. However, G-BLUP does assume
that the underlying loci have similar effect sizes, which
is not an accurate assumption when the number of
underlying loci is small. Given the polygenic nature of TG
phenotypes, however, we do not expect this assumption to
have been violated in our case.
A single common criterion was used to assess each

matrix’s performance in producing accurate EGV estimates.
In particular, we estimated the accuracy of individuals’
EGV based on the prediction error variance (PEV). In
the absence of statistical bias, PEV is equal to the mean
squared error (MSE). The accuracy was estimated as

EA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−PEV=σ2g
p

, where σ2g is the additive genetic
variance of the base population [1]. This accuracy
measure can be interpreted as reflecting the extent to
which individuals’ EGVs may change when more detailed
information about them becomes available, such as the
addition of a close relative to the analyses. A small predic-
tion error variance indicates that additional information
would not lead to a change in the EGV estimate and,
therefore, that the estimate is reliable.

Second-degree relatives’ approximation
Research in animal breeding suggests that the number of
relatives in a pedigree can influence the accuracy of esti-
mated EGVs [8]. To test that hypotheses, we regressed
EA estimates on the number of second-degree relatives
(SDRs). SDR was calculated here, for each individual, as
the approximate number of second-degree relatives an
individual has on the total data set. This approximation
was obtained by counting the number of pairwise
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kinship coefficients between an individual and the rest
of the population that are higher than 0.25.

Linkage mapping
The decomposition of a trait into its genetic and environ-
mental components opens up the possibility of increasing
the genetic signal in linkage studies through the removal
of structured environmental effects. Therefore, we here
regressed the linkage signals obtained by using EGVs as
traits on the results obtained from traditional genetic
mapping (see Peralta et al. [15] for details of the mapping
procedures). Regression slopes significantly higher than 1
were interpreted as indicating increased power for detect-
ing genetic linkage.

Results
Initial processing
PREST-Plus identified a total of 6 potentially erroneous
samples when taking into account the relationships
within pedigrees. To prevent these erroneous samples
from influencing the downstream analyses, they were
removed from the original GAW20 data set (5604,
8117, 1927, 4078, 3621, 8117). See Blackburn et al. [16]
for details.

Accuracy of TG EGVs pre- and posttreatment
Accuracy estimates (Fig. 1) suggest that both pre- and
posttreatment TG levels can be fairly accurately predicted
based on their kinship matrices, regardless of whether
IBDLD, LDAK, or pedigree kinship was used. Accuracy
ranged from 0.3 to 0.84, depending on the individual.
Overall, the pedigree kinship matrix resulted in slightly
lower average accuracy than the remaining matrices.
Likewise, posttreatment TG are less-reliably estimated
than pretreatment TG, largely because of individuals
with missing phenotypes (lower tail values). Finally, the
IBDLD-based kinship estimates are closer to LDAK
than to pedigree estimates.

Association between EGV reliability and the number of
relatives in the pedigree
When regressing accuracy estimates on the number of
SDRs (Fig. 2), we found a close relationship between the
accuracy of EGV estimates and the number of relatives
an individual possesses in the pedigree. The overall fit of
linear regressions is higher among empirically derived EGVs
(~ 75% for pre-TG) than pedigree-based EGVs (~ 20% for
pre-TG). Outliers in the posttreatment TG data are associ-
ated with individuals with missing phenotypes.

Linkage mapping
When regressing logarithm of odds (LOD) scores obtained
from EGV-based linkage scans on the traditional linkage
scan LODs (pre-TG Fig. 3a; post-TG Fig. 3b), we found a
close relationship between the LOD scores across the 2 dif-
ferent approaches. The overall fit of the linear regression
indicates that no substantial change in locus rank occurred
when using EGVs as traits in the linkage scans. However,
the slope of the regression is significantly higher than 1
for both pre- (p < 0.001) and posttreatment- TG levels
(p < 0.001), indicating that the use of EGVs considerably
enhanced the genetic signal in both cases.

Discussion
Reliable prediction of complex human phenotypes or
diseases will be essential to attain the objective of truly
personalized medicine. Marker-informed prediction based
on SNPs has already become commonplace [3, 17–19]
and increasingly sophisticated. However, most of the
studies using small SNP sets have generally explained
very little of the total variation in complex traits, with
values often much lower than 4% of the total pheno-
typic variation.
Genome-wide approaches, on the other hand, are still

rare, but have already helped us attain much higher pre-
dictive power. Yang et al. [20], for example, used a total of
294,831 SNPs scored in approximately 4000 individuals to

a b

Fig. 1 Reliability in EGV estimates using both (a) pre- and (b) posttreatment TG levels, when comparing across the different kinship matrices
(Pedigree, LDAK, IBDLD). Distributions are illustrated using kernel density estimates (KDEs), as implemented in the ggplot2 R package
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show that such a SNP set could explain as much as 45%
of the total variance.
In this study, we aimed to show how statistical tech-

niques borrowed from animal breeding could be employed
to predict complex phenotypes with relatively high
accuracy (see Fig. 1). Furthermore, we tested the overall

effect of choice of kinship matrix and pedigree relatedness
in influencing the accuracy of G-BLUP. Although significant,
the increase in accuracy obtained by using empirically
derived kinships is likely not substantial enough to solely
justify the price of scoring dense marker data. However,
when dense marker data are available, the results presented
here suggest empirically derived kinship matrices can be
useful in increasing the accuracy of EGV estimates. This
increase is particularly evident in individuals with missing
phenotypes, who form the lower tail of the distribution of
accuracies (see Fig. 1b). Empirical kinships can capture
distant relatedness and, therefore, improve the accuracy
of the phenotypic prediction of individuals with missing
phenotype by using their relative’s information.
In general, prediction accuracy increases with the

number of relatives an individual possesses in the data
set (see Fig. 2). This is particularly true for empirically
derived kinship estimates, as genomic data allows one to
capture more distant or nuanced relationships between
individuals. Individuals with missing phenotypes, how-
ever, have more poorly estimated EGV values, regardless
of choice of kinship matrix.
In any case, our results also suggest that using EGVs

in linkage studies might be a fruitful way to increase the
power to detect genomic regions underlying complex
traits. By removing the structured environmental variance
from the phenotypic variance, we see a pronounced
increased in LOD scores of the linkage model. It should
be noted, however, that a proper test of this hypothesis
is to start with a system in which the genomic variants
are known a priori.
Because the GAW20 data set is composed of mostly

unrelated individuals, one could anticipate that GP
based on more closely related individuals would generate
highly accurate EGV estimates. In other words, family-
based studies might represent a particularly useful starting
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Fig. 2 Local regressions of the accuracy in individual estimates of EGVs on the number of SDRs, when using both (a) pre- and (b) posttreatment TG
levels, as well as different kinship matrices (Pedigree, LDAK, IBDLD)Note the closer fit of empirically derived EGVs when compared to pedigree-based EGVs

a

b

Fig. 3 Linear regressions of (a) pre- and (b) post-TG LOD scores
obtained from EGV-based linkage scans on the traditional linkage
scan LODs. Red line indicates the 1:1 line and the blue line indicates
the best-fitting regression line. Regression equations are shown in
the bottom right corner
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point when attempting to use EGVs in the analyses of
complex traits or in personalized medicine.

Conclusions
Our analysis of the GAW20 data set shows that dense
genome-wide SNP data can be used to accurately estimate
EGVs for use in personalized medicine or to increase the
power of linkage scans. EGVs estimated based on empirical
kinship matrices are slightly more reliable than pedigree-
based matrices, largely as a consequence of their ability to
capture distant relationships among individuals. Similarly,
the prediction accuracy increases with the number of
relatives an individual possesses in the data set. In sum,
family-based studies, with empirically derived kinships,
might be the ideal study design for the application of
GP of complex traits in human health research.
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