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Abstract

Background: There has been significant interest in investigating genome-wide and epigenome-wide associations
with lipids. Testing at the gene or region level may improve power in such studies.

Methods: We analyze chromosome 11 cytosine-phosphate-guanine (CpG) methylation levels and single-nucleotide
polymorphism (SNP) genotypes from the original Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study,
aiming to explore the association between triglyceride levels and genetic/epigenetic factors. We apply region-based
tests of association to methylation and genotype data, in turn, which seek to increase power by reducing the
dimension of the gene-region variables. We also investigate whether integrating 2 omics data sets (methylation and
genotype) into the triglyceride association analysis helps or hinders detection of candidate gene regions.

Results: Gene-region testing identified 1 CpG region that had been previously reported in the GOLDN study data and
another 2 gene regions that are also associated with triglyceride levels. Testing on the combined genetic and
epigenetic data detected the same genes as using epigenetic or genetic data alone.

Conclusions: Region-based testing can uncover additional association signals beyond those detected using single-
variant testing.

Background
Many authors have called for greater use of gene-based ap-
proaches to detect candidate regions at the genome-wide
discovery stage, raising concerns that exclusive marginal
single-variable testing may miss more complex associations.
For example, Yoo et al. [1] report that region tests can be
more sensitive to genetic architectures with multiple causal
components, and find that reduced-dimension test statis-
tics, such as that proposed by Gauderman et al. [2], can im-
prove power compared to tests in full multivariable
regressions. To some extent, this argument also applies to
genome-wide epigenetic studies, but conclusive evidence is

lacking for it. Specification of the constituent variables for a
gene region, however, is a major challenge in implementa-
tion for both genetic and epigenetic gene-region modeling,
and is critical for integration of the 2 data sources when the
molecular technology platforms differ.
In their investigation of epigenome-wide association of

fasting blood lipids in the Genetics of Lipid Lowering Drugs
and Diet Network (GOLDN) study, Irvin et al. [3] model
the percentage methylation separately at each individual
cytosine-phosphate-guanine (CpG) site as a function of tri-
glyceride levels. They report genome-wide significant asso-
ciations of 4 CpG sites in intron 1 of the CPT1A gene
located on chromosome 11. In this article, we apply
gene-region association methods to the original chromo-
some 11 epigenetic data from the GOLDN study [3], sup-
plemented with chromosome 11 genome-wide association
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study single-nucleotide polymorphism (SNP) data available
in a common subset of individuals. Our aims are to explore
the association between baseline triglyceride (TG) levels
and genetic/epigenetic factors using gene-region analysis
methods, and to investigate 1 approach to integration of 2
omics data types (SNP genotype and CpG methylation) by
comparing the integrated approach with separate analyses.

Methods
Data
We take the phenotype to be log-transformed triglyceride
(lnTG) using averaged TG measurements before treatment
with fenofibrate. To investigate genetic association with the
phenotype, we convert the Affymetrix platform SNP geno-
types to allele counts coded as 0, 1, or 2. In total, we con-
sider 36,796 SNPs on chromosome 11. The methylation
data for the same chromosome consists of 28,285 CpG sites
in total. The number of participants from the original study
with sufficiently complete epigenetic data are 995. Of the
995 participants, 717 had genotype information as well.

Specification of gene regions
Sets of CpG sites and SNPs corresponding to each gene
region were obtained using the GENCODE [4] annota-
tion file bundled with LocusZoom standalone software
[5], and expanding each genetic region by 20 kb before
the start, and after the end, of the annotated base-pair
positions. This was done to include any possibly related
functional SNPs or CpG sites from each gene neighbor-
hood. In all, we defined 2621 gene regions on chromo-
some 11. The number of component variables per gene
region ranged from 2 to 544 for SNPs and from 2 to 372
for CpG sites. For computational reasons, we excluded 6
genetic regions (Metazoa_SRP, SNORA1, SNORA7, U3,
Y_RNA, snoU13) that had more than 2000 CpG or SNPs
from the subsequent gene-region regression analysis.

Single CpG epigenetic association
To investigate association between TGs and methylation
on chromosome 11, we regress percentage methylation
on lnTG measurements as in Irvin et al. [3], and include
age, study site, sex, and cell purity as fixed effects, and
family as a random effect. TG values are first averaged
over the measurements pretreatment (at most 2 per par-
ticipant), as this yields the most complete data set (995
cases). Cell purity variables estimated as the top 4 prin-
cipal components of the methylation data, are included
as fixed effects. The model reads (in R notation):

CpG � ln TGð Þ þ ageþ center þ sexþ PC1G

þ PC2G þ PC3G þ PC4G ð1Þ

with a random effect for GPEDID, the family ID from
the pedigree file, used to account for familial

correlation. Here, the superscript G indicates that the
principal component (PC) for cell purity is computed
globally for chromosome 11. We note 2 differences
from the original GOLDN study. First, the chromo-
some 11 methylation data we use to calculate cell
purity PCs) has 28,285 CpG sites, whereas in Irvin et
al. [3] the same procedure was based on 461,281 CpG
sites from the whole genome (after quality control).
Second, model (1) assumes a common correlation
among members of the same family, whereas the ori-
ginal analysis used the kinship coefficient to define
the correlation of random effects. Our approach is
much faster computationally as it uses the lmer func-
tion rather than lmekin (as in Irvin et al. [3]). We
also confirmed the fit using the kinship coefficient,
but note that the p values obtained using model (1)
already match those in the original paper fairly
closely.

Gene-region testing of SNP genetic and CpG epigenetic
association
To assess the value of integrating the 2 types of data
in detecting gene regions associated with the TG
phenotype, we regress lnTG on SNP-derived and
CpG-derived predictors. We employ the method of
Gauderman et al. [2], which computes the PCs of the
regressors, and tests for association between the re-
sponse (“Y” = lnTG) and the PCs of the “X” variables
that explain at least 80% of their total variation. This
method takes advantage of the correlation structure
within a gene region, and may increase power by re-
ducing the dimensionality of the regressor set, such
that more genes achieve significance even if their
component CpG sites/SNPs are not detected in mar-
ginal regression.
For a given gene, let {PCs

1; PC
s
2;…; PCs

k } be the first
k PCs of the SNP variables associated with that gene,
which explain 80% of their variation. Similarly, define
{PCm

1 ;PC
m
2 ;…; PCm

l } as the first l PCs of the methyla-
tion data. With this reduced data set, we fit the fol-
lowing regression models, including random effects
for family:

ln TGð Þ � PCs
1 þ PCs

2 þ…þ PCs
k þ age

þ centerþ sex ð2Þ
ln TGð Þ � PCm

1 þ PCm
2 þ…þ PCm

l þ age
þ centerþ sexþ PC1G ð3Þ

ln TGð Þ � PCs
1 þ…þ PCs

k þ PCm
1 þ…þ PCm

l

þ ageþ center þ sexþ PC1G ð4Þ
We opted to use the first chromosome 11 global

PCG of the methylation data as a measure of cell pur-
ity, as we found this produces a CpG test p value
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distribution close to that expected under the null hy-
pothesis. In each of the 3 models [models (2), (3),
and (4); fitted via R function lmer], a global Wald test

is performed on the coefficient estimates β̂ of the
SNP and/or CpG PC terms. Model (4) is designed to
assess the combined contribution of the CpG and
SNP PCs and determine whether the 2 sets of PCs
make independent contributions. Although we limited
testing to chromosome 11, to control the overall Type
1 error level, we specify a genome-wide significance
threshold for testing. Counting approximately 20,000
to 30,000 genes (and thus tests) yields a threshold of
2 × 10− 6.

Integration of predictors at the gene-region
To further differentiate the relative contribution of
SNPs and CpG sites in model (4), we compute vari-
ance inflation factors (VIFs) for each PC as a means
to identify multicollinearity among the variables in
the joint regression model. High correlation between
SNP and CpG components may be undesirable be-
cause it can inflate standard error estimates. The VIF

in a linear regression is computed as VIFi ¼ ð1−R2
i Þ−1,

where R2
i is obtained by regressing the ith predictor

on all the other predictors. In our case, as PCs in
each data set are orthogonal, the VIF for a SNP PC
will be based on its correlation with all the CpG PCs,
and conversely.

Results
Single CpG testing
We reproduced the original study associations [3] for
chromosome 11 by fitting model (1) to %methylation for
each CpG. Eight CpG sites achieved significance (p value
< 10− 7) with the top 4 sites the same as those found in
the GOLDN study in CPT1A (Table 1).

Gene-region testing of CpG’s and SNPs
We fit models (2) to (4) to each gene region in turn,
and test the corresponding global association hypoth-
eses for CpG’s and SNPs using generalized Wald tests.
We detect gene CPT1A using gene-region testing, but
in addition we find 2 other genome-wide significant re-
gions: AP006216.5 using methylation data, and BUD13
using genetic data (Table 2). These gene-regions are in
the same neighborhood that also contains APOA5,
detected in the single CpG analysis reported in Table 1
(Fig. 1).
The integration of the 2 data types does not seem

to improve the overall association signal: testing
found the roughly the same gene set to be significant
as in the separate epigenetic and genetic analyses,
with 3 of the top 4 genes having larger p values (see
Tables 2 and 3). The examination of pairwise correla-
tions between CpG and SNP PCs within gene regions
suggests that this can be explained by relationships of
higher order CpG PCs with SNP PCs, particularly for
CPT1A and APOA5. APOA5 was affected in both epi-
genetic and genetic components. The gene BUD13
detected in the genetic SNP analysis dropped below
the detection threshold after adding CpG data, most
likely a consequence of the increase in model degrees
of freedom. Remarkably, we observe little Spearman
rank correlation between the epigenetic and genetic
gene-region p values across the 2615 gene regions.
To address multicollinearity in predictor integration,

we fit a reduced model (4) to the 2 genes in Table 3
with high VIFs (Fig. 2) by sequentially dropping high
VIF PCs, until no term remains with a VIF larger than
2 (this corresponds to excluding those PCs with ≥50%
variation explained by the other predictors). This
removes SNP PC1 and PC2 from the CPT1A model,

Table 1 Top epigenetic signals for TGs (Model 1) detected in
the GOLDN study data set (n = 995)

Mark name Genes Position p Value (lmer) p Value (lmekin)

cg00574958 CPT1A 68,607,622 6.52E − 31 1.23e − 35

cg17058475 CPT1A 68,607,737 1.61E − 20 1.31e − 21

cg01082498 CPT1A 68,608,225 2.21E − 11 2.85e − 12

cg09737197 CPT1A 68,607,675 7.30E − 10 9.34e − 10

cg11376147 SLC43A1 57,261,198 2.51E − 09 7.53e − 09

cg26989316 CPT1A 68,607,257 1.90E − 08 7.56e − 09

cg12556569 APOA5 116,664,039 2.25E − 08 4.63e − 10

cg00264754 LRRC4C 40,136,810 9.30E − 08 3.39e − 07

Table 2 Gene-region testing applied to separate epigenetic and genetic regressions (Models 2 and 3; n = 717)

Gene Gene region (BP) Epigenetic Genetic

Start End Degrees of freedom p Value Degrees of freedom p Value

CPT1A 68,522,088 68,611,878 33 3.44e − 14 5 0.436

AP006216.5 116,683,920 116,684,719 7 3.51e − 06 4 0.045

BUD13 116,618,886 116,643,704 17 0.538 5 1.48e − 07

APOA5 116,660,083 116,663,136 17 1.95e − 04 6 1.47e − 05
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and CpG PC9 from the APOA5 model, (with VIFs for
all remaining terms below 1.4), but does not improve
the overall association signal (p values of 1.57e-13 and
9.25e-04 for CPT1A and APOA5, respectively). For
APOA5, the most highly collinear CpG PC is also one
of the strongest predictors of TG, suggesting that VIF
pruning is not advisable for improving power, but can
help clarify variable importance.

Discussion
In this contribution to GAW20, we investigate associa-
tions between a lipid phenotype (TG level) and epigenetic
(methylation CpG sites) and/or genetic (SNP) markers. As
an alternative to single-marker analysis, we apply a
gene-region testing method based on multiple regressions
of PCs summarizing CpG sites and SNPs in each gene re-
gion. The dimension reduction fraction achieved (number
of PCs that explain at least 80% of data variability over the
number of original variables) was often greater than 50%,
with greater data compression for larger genes, and SNP
sets showing slightly more dimension-reduction capacity
than CpG sites, despite having similar number of original
variables (Fig. 3).
In separate and combined epigenetic and genetic re-

gression analyses, we detected genome-wide significant
gene-region CpG signals for the CPT1A gene reported

in the original GOLDN study [3], as well as for 2 other
genes. The 2 other gene regions lie within 50 kb of a sin-
gle significant CpG detected in our single-variable CpG
analysis, which suggests that this entire region harbors
signals of association with TGs. For the CPT1A gene, the
epigenetic component clearly leads the results, with no
detectable genetic signal. Associations detected with
AP006216.5, BUD13, and APOA5, all located in a differ-
ent region of chromosome 11, also included epigenetic
and/or genetic components. For AP006216.5, the epi-
genetic component leads the overall association, with an
independent nominal genetic component. In contrast,
for BUD13, the genetic component is the sole contribu-
tor. For the APOA5 gene, which is located midway
between AP006216.5 and BUD13, there is suggestive
genome-wide association resulting from both epigen-
etic and genetic components, which are not inde-
pendent, and we find evidence for relationships
between certain CpG PCs and SNP PCs. Notably,
APOA5 is a known genetic determinant of TG vari-
ation, and recent data points to joint genetic and epi-
genetic regulation of TG [6].
We attempt to increase power in the combined epi-

genetic and genetic regression using VIFs to eliminate
multicollinearity among predictors. This produces 2
sets of regressors that are approximately orthogonal,

Fig. 1 Close-up view of the genetic region containing BUD13, APOA5, and AP006216.5 (from UCSC Genome Browser)

Table 3 Gene-region testing applied to integrated epigenetic–genetic regressions (Model 4; n = 717)

Gene BP Start Epigenetic Genetic Epigenetic + Genetic

Start Degrees of freedom p value Degrees of freedom p Value Degrees of freedom p Value

CPT1A 68,522,088 33 2.47e − 14 5 0.276 38 9.44e − 14

AP006216.5 116,683,920 7 2.62e − 06 4 0.034 11 1.16e − 06

BUD13 116,618,886 17 0.711 5 7.13e − 07 22 2.23e − 04

APOA5 116,660,083 17 0.088 6 0.064 23 7.19e − 05
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facilitating evaluation of independent contributions of
SNP- and CpG-based PCs, but this approach does
not strengthen association signals in the combined re-
gression. We speculate that this may be partly be-
cause the PCs which are highly correlated between
data types are likely to share causal etiology, so ex-
cluding them reduces power; and partly because most
PCs are largely uncorrelated, and the VIF approach
does not eliminate these PCs. Our recommendation
for future studies is that Gauderman’s method works
well at the gene level for separate analysis of both
genetic and epigenetic data types, and integration of
the 2 data sources, with assessment of their intercor-
relation, can give further insight.

Conclusions
Using a gene-region testing approach that effectively
reduced predictor dimensionality, we recovered the
gene CPT1A as having significant association between
methylation and TG levels. In addition we identified 2
other genes that were not detected in the single CpG
analysis: gene BUD13, genetically significant, and re-
gion AP006216.5, epigenetically significant. In integra-
tion of the genetic and methylation data types when
testing for association with TG levels at the gene level,
although we found no evidence of improvement in as-
sociation signal strength over separate analyses, use of
a combined model helps clarify the relative contribu-
tion of epigenetic and genetic components.

Fig. 2 Plots of VIFs for each of the top genes, corresponding to CpG PCs (blue) and SNP PCs (green)

Fig. 3 Left: Gene sizes (log scale) in SNPs versus CpGs. Right: Fraction of dimension reduction achieved by applying Gauderman’s method to SNPs
(black circles) and CpGs (green Xs) on chromosome 11
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