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Abstract

In this paper, we consider the use of the least absolute shrinkage and selection operator (LASSO)-type regression
techniques to detect important genetic or epigenetic loci in genome-wide association studies (GWAS) and
epigenome-wide association studies (EWAS). We demonstrate how these techniques can be adapted to provide
quantifiable uncertainty using stability selection, including explicit control of the family-wise error rate. We also
consider variants of the LASSO, such as the group LASSO, to study genetic and epigenetic interactions. We use
these techniques to reproduce some existing results on the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) data set, which collects from 991 individuals blood triglyceride and differential methylation at 464,000
cytosine-phosphate-guanine (CpG) sites and 761,000 single-nucleotide polymorphisms (SNPs), and to identify new
research directions. Epigenome-wide and genome-wide models based on the LASSO are considered, as well as an
interaction model limited to chromosome 11. The analyses replicate findings concerning 2 CpGs in carnitine
palmitoyltransferase 1A (CPT1A). Some suggestions are made regarding potentially interesting directions for the
analysis of genetic and epigenetic interactions.

Background
Blood lipids are linked to increased risk of heart disease,
heart attack and stroke. Researchers have explored the
effects of genetic variation [1] and epigenetic variation
[2] on lipid metabolism. Both these studies use trad-
itional F-statistics to screen for important loci of genetic
or epigenetic variation. Such statistics, however, tend to
lose power when faced with the high-dimensional nature
of these problems, as adjusting for multiple comparisons
is necessary.
We propose an alternative variable screening method

that considers a more global approach. Adaptations of
the least absolute shrinkage and selection operator
(LASSO) selector, first proposed by Tibshirani [3], have
proven powerful in the context of high-dimensional vari-
able selection. We combine such a method with the

strategy of stability selection [4] to obtain a global selec-
tion strategy that enables us to control the family-wise
error rate. We apply these methods to study both gen-
etic and epigenetic effects on blood lipids. Finally, we at-
tempt to extend such methods to tackle the genetic–
epigenetic interactions and their effects on blood lipids.

Methods
LASSO and sparse regression
A popular tool to tackle statistical problems with a large
number of covariates is the LASSO. First proposed by
Tibshirani [3], its computational tractability and ability
to produce sparse responses has made it very popular in
the biomedical field, and in problems such as
genome-wide association studies (GWAS) and similar.
The LASSO and its variants attempt to solve a sparse

linear regression problem by optimizing a penalized
least-squares objective function. Given a vector y of re-
sponses, and a design matrix X, the LASSO estimator is
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the solution of min
β

1
2n

ky−Xβk2 þ λΩðβÞ;where Ω(β) is

a sparsity-inducing prior; for example, Ω(β) = ‖β‖1 = ∑i ∣
β

i
∣ in the case of the LASSO. Here, λ > 0 is a tuning

parameter that trades off between goodness-of-fit and
sparsity of the solution.
We note that in practice, it may be helpful to add a

slight l2 penalty in addition to the sparsity-inducing pen-
alty to reduce the effect of correlation among predictors.
Such a procedure, called elastic-net, was first introduced
by Zou and Hastie [5], and often displays superior per-
formance in simulations [6, 7]. The LASSO and its varia-
tions have been shown to obtain good theoretical
properties [8, 9], as well as good performance on GWAS
data sets [6].

Regression model and family structure
Kinship
It is common to model the outcome as a simple univari-
ate linear regression where the outcome is regressed on
a particular single-nucleotide polymorphism (SNP) or
cytosine-phosphate-guanine (CpG) location, and covari-
ates are included in the regression to control for envir-
onmental effects such as smoking. In such a context, it
is often important to model the dependency among the
remaining unobserved genetic information of individuals
who are related, that is, the kinship.
This paper follows a different approach by jointly

modeling the effect of all the SNP and/or CpG locations
in the regression. The dependency between related indi-
viduals resulting from unaccounted genetic or epigenetic
correlation is thus greatly reduced. In particular, the
need to model kinship is greatly reduced, and it was not
modeled in this paper.
We note that this does not control for any correlation

resulting from environmental effects, such as individuals
who live in the same household. We were unable to take
such effects into account as household information was
unavailable.

Linear allele effect
A common assumption in GWAS studies is that of a lin-
ear allele effect, (LAE) that is, the effect of the presence
of 2 minor alleles is twice that of the presence of single
minor allele: the SNP is included in the linear regression
as a single numerical variable corresponding to the
number of minor alleles. In this paper, interactions be-
tween the methylation at CpG sites and SNPs are of par-
ticular interest, which makes this assumption more
tenuous than it usually is. Indeed, in the linear regres-
sion framework it is natural to model the interaction as
a multiplicative interaction, which would further imply

that not only is the presence of the minor allele linear,
so is the interaction between methylation and allele.
Instead, we consider a fully general model where the

allele value is coded in a categorical fashion using indi-
cator variables. Although this may cause a loss of power
by increasing the number of variables, penalized regres-
sion techniques such as LASSO and group LASSO are
somewhat able to mitigate this.

Stability selection
In addition to obtaining a binary answer (whether a
locus was selected), it is often of interest to quantify the
uncertainty in the selection. Although significance tests
have been developed for the LASSO [10], their interpret-
ation is delicate given the problem of selecting the tun-
ing parameter λ.
We chose a different method to quantify the uncer-

tainty that is inspired by the bootstrap and similar re-
sampling methods: stability selection. Stability selection
was first proposed by Meinshausen and Bühlmann [4],
and subsequently improved by Shah and Samworth [11].
It is a technique that may be used to adapt any variable
selection technique to produce a statistical testing pro-
cedure for which the Type I error may be characterized;
for example, by controlling the per-family error rate
[12].
Stability selection attempts to select variables (or

groups of variables) that are “robust” to perturbations in
the data set. To apply stability selection to a given vari-
able selection method, each method was run numerous
times on modified data sets containing a random sub-
sample (without replacement) of the observations and
with the penalty randomly rescaled for each variable.
More precisely, as suggested in Shah and Samworth
[11], random subsamples were taken to be of a size that
was exactly half of our total data set, and whenever a
subsample was included, so was its “complementary
pair”; that is, those observations that were left out.
One of the main advantages of stability selection is

that it enables us to control the family-wise error rate
with only very weak assumptions on our selection pro-
cedure, reducing our dependence on selecting the appro-
priate penalization and other tuning parameters for the
LASSO. Indeed, if variables are deemed significant
whenever their probability of selection under the stabil-
ity selection procedure is greater than a given threshold
τ, the number of falsely selected variables V can be con-
trolled in expectation (under technical assumptions) by
EV ≤pMðτ; q; pÞ; where p is the total number of vari-
ables, q is the number of variables selected on average in
each random sample, and M is some (known and com-
putable) function. For the rigorous definition and state-
ment, see Shah and Samworth [11]. Hofner et al. [13]
provides extensive simulation results.
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Group LASSO for categorical variables and interactions
The group LASSO [12] modifies the LASSO penalty Ω
to penalize groups of variables together. Suppose that
we have ng groups, and let βj, j = 1, …, ng be the coeffi-
cients for each group (β j∈ℝ

d j where group j has dj vari-

ables), then the group LASSO is the solution of the
optimization problem:

min
β

1
2n

y−Xβk k22 þ λ
X

j
β j

���
���
2

We note that although we are using the two-norm
penalty ‖βj‖2, it does not appear squared, and hence does
indeed induce sparsity at a group level: it is the case that
either each element of βj = 0, or that each element of βj ≠
0. Note that this generalizes the standard LASSO, which
corresponds to the group LASSO with groups of size 1.
This adaptation of the LASSO allows us to include

categorical variables into the regression model. Indeed,
to include a categorical variable Xj as a linear regressor,
it is necessary to use some form of indicator coding,

which causes a categorical regressor to expand into sev-
eral indicator columns corresponding to levels of the
categorical variable. Group LASSO enables us to accom-
modate such practice by including these indicator vari-
ables as a group and selecting either all or none of them.
Even though the LASSO is particularly adapted for

high-dimensional problems, finding interactions in such
data sets is challenging. Some proposals (eg, Hofner et
al. [13]) adopt a 2-step process by screening for variables
with marginal importance first. However, it occasionally
can be the case that variables of little marginal import-
ance may be highly significant once interactions are in-
cluded, making it desirable to consider such interactions
together. Yuan and Lin [14] propose leveraging the
group LASSO to screen for interactions that respect the
strong hierarchy. Indeed, given 2 variables—X1, X2—for
which we would like to include an interaction term, we
may include a group consisting of the variables [X1, X2,
X1 ∗ X2]. Note that some variables may appear in several
groups, which is often called overlapped group LASSO
[15–17]. We can recover the effect of such variables by
simply summing all of their coefficients.
In addition, we note that in the case of methylation by

genotype interactions, there is a natural biological struc-
ture to the problem. By considering the location of the
methylation and genetic mutation sites on the chromo-
some, we may restrict the space of our interactions by
requiring them to be colocated on the chromosome.

Results and discussion
Epigenetic association
We first consider the analysis of the effect of methyla-
tion on blood lipids as in Irvin et al. [2]. We regress the
log of the mean fasting triglyceride (TG) level on the
logit of the methylation, while controlling for the age
and smoking status of each patient and the scores of the

Fig. 1 Probability that a CpG site is selected in the epigenome-wide model

Table 1 The most frequently selected CpG marks

Mark name Gene Selection probability

cg00574958 CPT1A 0.92

cg11024682 SREBF1 0.54

cg12556569 APOA5 0.51

cg07504977 N/A 0.48

cg06500161 ABCG1 0.47

cg27452255 N/A 0.44

cg26797124 N/A 0.43

cg17058475 CPT1A 0.42

cg24819835 CD38 0.42

cg17287155 AHRR 0.40
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first four principal components of the methylation. The
number of principal components is chosen as in Irvin et
al. [2] so that the results are comparable, and the regres-
sion is done epigenome-wide.
We use an elastic-net and select the penalization by

cross-validation on the data set. We subsequently apply
the conjugate pair stability selection to 100 random
pairs, and obtain the observed selection probability. The
procedure is done using a custom-written group LASSO
solver implementing block-coordinate descent [18] in
Python. With the cross-validated penalty, there are an
average of 112 selected CpG sites for a given
stability-selection sample.
We have reproduced in Fig. 1 a similar Manhattan plot

as in Irvin et al. [2] by plotting the log probability that a
given locus is not selected. Note that although these
numbers may be viewed as a measure of confidence,
they are not p values and cannot be interpreted as such.
We observe a result similar to that in Irvin et al. [2].

In particular, we observe that 2 of the CpG sites re-
ported as significant by Irvin et al. [2] related to the car-
nitine palmitoyltransferase 1A gene CPT1A appear as
significant in our data, as shown in Table 1. In this case,
the cutoff to control the per-family error rate at a level
of 0.05 is given by τ = 0.33. We also note that 2 of the
CpG sites are contained within genes (SREBF1 and

APAOA5) that are related to the regulation of lipid me-
tabolism by the peroxisome proliferator activated recep-
tor α (PPARα) pathway.

Genetic association
We now consider the analysis of the association of blood
lipids and genotype. The log of the mean fasting TG
level is regressed on a feature matrix created from the
genotype, controlling for age, smoking, and the scores of
the first four principal components of the genotype. The
regression is done using the group LASSO with a slight
elastic-net penalization selected by cross-validation. Each
SNP is coded using indicators that are considered as a
group for the purpose of the group LASSO. Conjugate
pair stability selection was applied on 100 random pairs,
and the observed selection probability of the groups
were obtained. The cross-validated penalty yielded an
average of 230 selected groups. We produce a similar
Manhattan plot as previously (Fig. 2).
We note that the signal we obtain is significantly

weaker than for the epigenetic model. However, we ob-
tain a similar ranking for both the linear allele effect
model and the fully general model, as can be seen in
Table 2. We note that the FAM120B gene is related to
the PPARα pathway.

Fig. 2 Probability that a SNP is selected in the genome-wide model

Table 2 The most frequently selected SNPs

SNP Gene LAE selection probability (rank) General selection probability (rank)

rs7765549 NEDD9 0.31 (1) 0.17 (3)

rs10514174 THBS4 0.30 (2) 0.17 (4)

rs16901314 FAM120B 0.28 (3) 0.16 (5)

rs2064039 N/A 0.27 (4) 0.16 (7)

rs17769833 N/A 0.26 (6) 0.15 (9)

rs17027070 DENND2D 0.25 (8) 0.16 (6)
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Interactions
Finally, effects of epigenetic–genetic interactions on
mean fasting TG levels were considered. Because of the
high dimension of the search space, only chromosome
11 is considered, where the most significant epigenetic
effects were observed. To limit the number of possible
interactions, only interactions between methylation and
SNP loci that are separated by less than 0.01% of the
chromosome were considered (approximately 10,000
base pairs). Although this is adequate to model local var-
iations in the methylation mediating gene expression,
one may also be interested in taking further steps toward
exploring interactions among genetic pathways that are
not local to a single chromosome.
The constructed feature matrix has 28,285 groups of

size 1, corresponding to the methylation loci, 36,796
groups of size 2, corresponding to the SNP loci, and
190,073 groups of size 5, corresponding to the interac-
tions of nearby methylation and SNP loci.
The log of the mean fasting TG level is regressed on

the feature matrix described above using the group
LASSO with the described structure additionally con-
trolling for age, smoking, the scores of the first four

principal components of the methylation, and the scores
of the first four principal components of the genotype.
Figure 3 presents the results in a Manhattan plot for

chromosome 11 ordered by base pair position. The
interaction at the midpoint between the corresponding
methylation and genetic locus is plotted. The effects
tend to be clustered along the chromosome, which is
compatible with biological models of gene expression
modulation through methylation. This also suggests a
further direction of study by exploiting the location of
the loci on the chromosome as a further structure to use
in the design of the sparse regression, which may, for ex-
ample, be leveraged by variants such as the fused
LASSO [19]. Table 3 reports the top interaction terms.
Note that these do not include marginal terms for which
the interactions were not selected.

Conclusions
We show that sparse regression techniques can be ap-
plied to tackle the problems of selecting variables in
high-dimensional data sets as often arise in
genome-wide or epigenome-wide association studies, in-
cluding selecting variables in models containing inter-
action terms. These techniques enable us to improve on
the power of multiple F-tests in high dimension as they
adopt a more global, instead of locus-by-locus, point of
view. The effects seem to appear in a clustered fashion,
and further analyses could attempt to leverage the exist-
ence of such structure.
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Fig. 3 Probability that a CpG site, SNP, or interaction is selected in the interaction model on chromosome 11

Table 3 The most frequently selected interaction terms and
whether their component is marginally significant (ie, itself one
of the top selected components in the regression)

SNP mark CpG mark Selection probability Marginally significant?

rs4930266 cg00574958 0.20 Yes (CpG)

rs11228481 cg00574958 0.16 No

rs12577789 cg23089549 0.15 Yes (CpG)

rs4930263 cg00574958 0.14 Yes (CpG)

rs748541 cg19261050 0.13 Yes (SNP)

rs17149710 cg00574958 0.12 Yes (CpG)
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