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Abstract

As part of GAW20, we analyzed the familiality and variability of methylation to identify cytosine-phosphate-guanine
(CpG) sites responsive to treatment with fenofibrate. Methylation was measured at approximately 450,000 sites in
pedigree members, prior to and after 3 weeks of treatment. Initially, we aimed to identify responsive sites by analyzing
the pre- and posttreatment methylation changes within individuals, but these data exhibited a confounding treatment/
batch effect. We applied an alternative indirect approach by searching for CpG sites whose methylation levels exhibit a
genetic response to the drug. We reasoned that these sites would exhibit highly familial and variable methylation levels
posttreatment, but not pretreatment. Using a 0.1% threshold, posttreatment sibling correlation (scor) and standard
deviation (SD) distributions share 16 outliers, while the corresponding pretreatment distributions share none. Comparing
the pre- and posttreatment CpG outliers, 36 (8%) of SD distributions, and 449/450 (nearly 100%) of scor distributions differ.
Combined, these results identify methylation sites within the KIAA1804 and ANAPC2 genes. Each gene also has a highly
significant methylation quantitative trait locus (meQTL) (KIAA1804: p < 1e-200; ANAPC2: p < 3e-248), indicating that
methylation levels at these CpG sites are driven by meQTL and fenofibrate.

Background
Chromatin accessibility regulates gene expression. The
addition of methyl groups to chromosome regions of
gene initiation represses transcription, whereas loci, free
from DNA methylation, allow the initiation of gene ex-
pression. The degree of epigenetic regulation at these
loci varies by cell and tissue type and is responsive to
genetic and environmental factors, such as treatment
with a drug [1]. Recent research suggests an additional
model where the degree of gene expression alters methy-
lation levels, contributing to the notion that the relation-
ship between methylation and gene expression is a
two-way process [2]. Data available to GAW20 provide
an opportunity to assess methylation levels prior to and
following the administration of the lipid-lowering drug,
fenofibrate. The Genetics of Lipid Lowering Drugs and
Diet Network (GOLDN) study [3] includes a longitu-
dinal study of family members who have been measured
for methylation levels in blood at approximately 450,000

sites before and after 3 weeks of treatment with 160 mg/
day of the lipid-lowering drug, micronized fenofibrate.
Our initial aim was to assess whether methylation levels

at cytosine-phosphate-guanine (CpG) sites are responsive
to fenofibrate, and then identify the most responsive. We
planned to use their longitudinal differences in methyla-
tion levels in the analyses to achieve this aim; however,
discussions at GAW20 highlighted confounding batch
effects in methylation measures pre- and posttreatment.
Adjustment was not straightforward, as none of the sam-
ples were measured in both batches, and there were no
untreated individuals measured at both times to act as
controls.
We remained focused on our aim, and employed an

alternative indirect approach. We reasoned that there
may be CpG sites where the response to fenofibrate is
influenced by genetic variants. First, we know that feno-
fibrate is a ligand for the transcription factor, peroxi-
some proliferator activated receptor α, and it activates
proteins that bind to transcription factor binding sites. If
the genetic sequence of a site harbors a single nucleotide
polymorphism (SNP), transcription levels will vary based
on the allele present, which will introduce variability into
the degree of gene expression, which variability may be
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reflected by the degree of methylation at the CpG. Such
genetic effects will be reflected by increases in the herit-
ability and variability of their methylation levels, as these
are hallmarks of a genetic contribution to a quantitative
trait.
In our analyses, we used familiality as a surrogate for

heritability, because twin pairs are not available for ana-
lysis. We estimated familiality using the correlation of
methylation levels among sibling pairs (scor), recogniz-
ing the estimate may be inflated by the effects of com-
mon environment that includes factors in addition to
the treatment with fenofibrate. Variability in methylation
levels will also be increased, because genetic alleles im-
pact trait variance by making it larger. We use the stand-
ard deviation (SD) as our measure of variability. Using
this approach, we identified the concordant outliers of
the posttreatment methylation scor and SD distributions,
and filtered the concordant outliers to identify those that
were not pretreatment outliers. We interpreted these
CpG sites as exhibiting a genetic response to treatment.
To generate a more complete picture of the genetic

and fenofibrate influences on methylation levels at the
sites identified by the outlier analysis, we assessed
whether their methylation levels were influenced by
methylation quantitative trait loci (meQTLs). meQTLs
contribute to methylation levels directly, regardless of
the treatment with fenofibrate, although it is very con-
ceivable that the treatment could enhance their effect.
There is a growing literature describing the role of
meQTLs [4], although much remains to be researched
and understood about their mechanisms of operation.
To identify meQTLs, we tested the SNPs in the regions
surrounding the fenofibrate-responsive CpG sites for sig-
nificant associations with the methylation levels.

Methods
The study sample
Pretreatment methylation levels at approximately 450,000
sites were assessed for 995 individuals in 182 pedigrees.
Pretreatment methylation level SDs were estimated in this
sample. Although these individuals were pedigree mem-
bers, we did not adjust SDs for family structure because
each estimate was made on the same sample, and our ap-
proach ranked the estimates, but did not draw inferences
that assume their independence. These estimates were
used to construct the pretreatment SD distribution. Post-
treatment methylation levels, assessed at 450,000 sites in
153 pedigrees containing 530 individuals, were used to
construct the posttreatment SD distribution. Among the
pre- and posttreatment samples, 446 individuals were
common to both. Within the 182 pedigrees, there were
163 sibling pairs that had pretreatment methylation data
and correlations of methylation levels in the sibling pairs
were used to construct the pretreatment scor distribution.

Because CpG methylation levels are not normally distrib-
uted, we used a Spearman correlation, and for consistency,
the siblings in each pair were ordered by their birth order
when estimating the correlations. There were 119 sibling
pairs in the posttreatment sample used to construct the
posttreatment scor distribution. Of all the sibling pairs,
102 were common to both samples.

Outlier analyses
To identify the sites with the most familial and variable
posttreatment methylation levels, we identified the scor
and SD outliers, separately, pre- and posttreatment. Out-
liers were defined using an approximate 0.1% (450 sites)
threshold, and identified by ranking the scor and SD
CpG estimates within each distribution. R functions [5]
were used to estimate pre- and posttreatment scor and
SD for each of the approximately 450,000 CpG sites,
generate histograms for scor and SD values, and identify
their outliers and overlaps. We filtered these sites to
identify concordant posttreatment scor and SD outliers
that had not been pretreatment SD or scor outliers. CpG
sites meeting these criteria were interpreted to exhibit a
genetic pattern in their response to fenofibrate, and were
termed candidate fenofibrate-responsive CpG sites.

meQTL analyses
Two candidate fenofibrate-responsive genes were identi-
fied by their CpG sites, and we looked for meQTLs in
their chromosome regions. Using a minor allele frequency
of > 1%, and extending 1 Mb on either side of their associ-
ated CpG sites, there were 824 SNPs at KIAA1804 and
185 at ANAPC2 for meQTL analyses of regional SNPs
and CpG methylation levels.
SNP associations were tested in fenofibrate-responsive

gene regions using the Factored Spectrally Transformed
Linear Mixed Models (FaST-LMM) variance component
approach, which can be used for association testing in
pedigrees [6]. This software models a vector of pedigree
member trait value deviations from the pedigree mean
and a covariance matrix of kinship coefficients among
the pedigree members. The relationships among the in-
dividuals in the study sample do not need to be specified
explicitly to account for their nonindependence, as care-
fully chosen genome-wide association study (GWAS)
SNPs genotyped on the study sample are used to esti-
mate genetic similarity. This estimation is done using
SNPs from all chromosomes except the single chromo-
some containing the locus being tested for association.
Linear mixed models capture these relationships and a
transformation of the estimated matrix of pairwise rela-
tionships speeds the analysis.
Figures illustrating the location of the associated SNPs

in relation to their target gene and methylation site were
generated using the LocusZoom software [7].
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Results
Figure 1 presents the pre- and posttreatment SD and
scor histograms. As Fig. 1 shows, even though these dis-
tributions are very similar, the ranks of the individual
CpG sites within those distributions differ. Our analyses
of target CpG sites with a genetic response to fenofibrate
focus on the sites beyond the 0.1% (450 sites) CpG
threshold in these distributions. Figure 2 shows their
histograms. Twice the sibling correlation is an upper
bound of the heritability of the methylation levels, indi-
cating that these outlier CpG sites may have highly herit-
able methylation levels.
To identify CpG sites that are familial and variable we

searched for shared outliers posttreatment and compared
the results using the same analysis we used pretreatment.
Although the pretreatment SD and scor distributions have
no common outliers, the posttreatment scor and SD out-
liers shared 16 common sites (see Table 1), where the
genes associated with the 16 sites are listed in alphabetical
order, along with their chromosomes. Three sites listed at
the bottom of the table do not have an associated gene.
The fourth and fifth columns of Table 1 give the CpG
ranks in the pre- and posttreatment SD distributions with
the SD estimates in parentheses. The sixth and seventh

columns give analogous information for scor. When com-
paring outliers pre- and posttreatment, 36 (8%) of SD and
449/450 (nearly 100%) of scor outliers differ.
To illustrate the information in Table 1, in the first

row, site 24,309,769 is on chromosome 12 and is associ-
ated with gene A2ML1. The SDs of methylation levels
pre- and posttreatment are the same (.27) and the ranks
in the pre- and posttreatment distributions have a mar-
ginal difference (365 and 351). Although the sibling cor-
relations pre- and posttreatment (0.42 and 0.41) are
almost identical for this site, their ranks differ substan-
tially between the pre- (30,906) and posttreatment (210)
distributions. Because the SD ranks put A2ML1 in the
outlier category pre- and posttreatment, we do not view
this a providing strong support for a genetic response to
the treatment with fenofibrate, even though the shift in
rank in the scor distribution provide support for a gen-
etic contribution to methylation levels. Although much
of the table reflects a similar pattern, 2 sites and their
corresponding genes are in bold because there is a
change in outlier status for both scor and SD. We used
the criterion that the pretreatment ranks for scor and
SD do not meet our outlier definition. Two genes,
ANAPC2 and KIAA1804, meet this criterion, and

Fig. 1 Distributions of methylation standard deviations and sibling correlations pre- and posttreatment with fenofibrate
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Fig. 2 Outliers (top 0.1%) of distributions of methylation sibling correlations and standard deviations pre- and posttreatment with fenofibrate

Table 1 Associated genes and changes in SD and scorr for highlighted outlier CpG sites

CpG Chr Gene Post SD rank (esta) Pre SD rank (est) Post scor rank (est) Pre scor rank (est)

24,309,769 12 A2ML1 365 (0.27) 351 (0.27) 210 (0.42) 30,906 (0.41)

12,208,638 11 ACTN3 242 (0.28) 290 (0.28) 443 (0.4) 6697 (0.49)

9307883 9 ANAPC2 404 (0.27) 505 (0.25) 314 (0.41) 110,943 (0.31)

4,888,234 1 FCRLA 345 (0.27) 327 (0.27) 281 (0.42) 239,089 (0.21)

16,140,565 3 FHIT 47 (0.31) 95 (0.3) 169 (0.43) 70,600 (0.35)

1,778,345 1 GDAP2 182 (0.29) 318 (0.27) 391 (0.41) 36,074 (0.4)

3,796,003 16 KCTD5 218 (0.29) 245 (0.28) 180 (0.43) 176,434 (0.26)

16,675,926 1 KIAA1804 435 (0.26) 613 (0.24) 395 (0.41) 231,790 (0.22)

5,023,192 2 NDUFA10 38 (0.31) 32 (0.32) 206 (0.42) 153,842 (0.27)

17,040,924 11 OR52M1 63 (0.31) 132 (0.3) 37 (0.47) 35,002 (0.4)

8,210,706 14 SERPINA5 293 (0.28) 347 (0.27) 331 (0.41) 21,063 (0.43)

13,989,295 17 SKA2 108 (0.3) 105 (0.3) 426 (0.4) 38,937 (0.4)

10,890,644 10 TUBAL3 129 (0.3) 98 (0.3) 66 (0.45) 76,987 (0.34)

3,221,390 1 274 (0.28) 227 (0.28) 173 (0.43) 90,915 (0.33)

20,086,657 17 187 (0.29) 110 (0.3) 51 (0.46) 19,044 (0.44)

22,274,273 6 254 (0.28) 200 (0.29) 247 (0.42) 53,745 (0.37)

Sites in bold show a change in outlier status for both scor and SD
aEst refers to the estimate, rather than rank, of SD or scor in that sample
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became our strongest candidates for having a genetic re-
sponse to fenofibrate.
We conducted meQTL analyses for ANAPC2 and

KIAA1804 to identify genetic contributions to their
methylation levels. For KIAA1804, there is a very strong
GWAS peak with the lead SNP, rs1294198 having a p
value <1e-200. For ANAPC2, there is also a strong
GWAS peak (p < 3e-248), with the lead SNP rs3087779.
Figure 3 presents the results of the SNP association ana-
lyses for KIAA1804 and ANAPC2, with the methylation
sites shown on the plots with red arrows. For both
genes, linkage disequilibrium estimates between the lead
SNP and the other associated SNPs are correlated with

the sizes of their association signals. The SNP driving
the association at ANAPC2 is somewhat straightforward,
and is likely to be the lead SNP. However, identifying the
SNP (or SNPs) driving the association with methylation
at KIAA1804 is not straightforward.
The base pair range for KIAA1804 is 233,463,514 to

233,520,894. The lead SNP, rs1294198, is to the right
and downstream of the gene at 233,525,375, and the
CpG, 16,675,926, is at 233,518,998, within the gene. The
base pair range for ANAPC2 is 140,069,236 to
140,083,057. The lead SNP, rs3087779, is to the right
and upstream of the gene at 140,084,485, and the CpG,
09307883, is at 140,077,638, within the gene.

Fig. 3 SNPs associated with methylation levels (me QTL) at fenofibrate-responsive candidate genes
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Discussion
This study was designed to capitalize on the longitudinal
nature of the GAW20 data, and assess whether there are
CpG sites responsive to treatment with fenofibrate. To an-
swer this question, our aim was to detect any such CpG
sites. Initial analyses and discussions at GAW20, made us
aware of a batch effect, which precluded testing the CpG
sites for a fenofibrate response using a direct comparison
in their values, a preferred method of analyzing pre- and
posttreatment changes in methylation levels. This would
be accomplished by pairing the pre- and posttreatment
measures for an individual and using the difference or ra-
tio of the methylation levels to identify those CpG sites
that are significant. Given the confounding batch effect,
we chose, instead, to employ an indirect approach target-
ing CpG sites exhibiting posttreatment genetic effects that
were not seen pretreatment.
A number of study design choices arose. First, we

chose to analyze the full pre- and posttreatment samples
rather than the reduced sample of 446 overlapping indi-
viduals and 102 sibling pairs. To make that choice, we
assumed that these full samples are unbiased representa-
tions of the pre- and posttreatment populations, and
reasoned that the full samples provide greater power to
estimate SD and scor. We also assumed that everyone in
the posttreatment sample received the full treatment
with fenofibrate, although individual treatment histories
were not available. The reduced samples provide a single
consistent, but not necessarily unbiased, sample and
have lower power because our analyses do not capitalize
directly on the paired aspect of these data. However, we
also conducted the same analyses in the reduced sample,
and, unfortunately, did not find any CpG sites meeting
our criteria for being fenofibrate responsive. This led us
to a second analytic choice regarding the threshold used
for considering an observation to be an outlier.
In the larger pre- and posttreatment samples, we set an

arbitrary 0.1% threshold for identifying outliers. If this had
failed in the full sample, our plan was to set a more per-
missive threshold of 0.5%, and if that failed, set an even
more permissive threshold of 1%. Using the 0.5% cutoff in
the reduced sample, SD is ranked 463 posttreatment and
635 pretreatment, and scor is ranked 1000 posttreatment
and 17,955 pretreatment; KIAA1804 is selected again.
Additional design factors to consider are the criteria to

detect evidence of a genetic effect on the CpG methyla-
tion levels. Those CpG sites with outlier SDs can be
reflecting the effects of SNPs on their methylation levels.
Although a single SNP can cause a distribution to be-
come bimodal, the effects of multiple SNPs are better
detected using SD. In addition, screening 450,000 CpG
sites is a daunting task.
In summary, our analysis that uses outliers of the famili-

ality and variability distributions of CpG methylation

levels identified CpG sites exhibiting patterns consistent
with a genetic influence on their response to a 3-week
treatment with fenofibrate. The analysis is based on a
molecular model that postulates that fenofibrate changes
the activation levels of transcription factors that bind to
sites harboring SNPs, and the SNPs introduce a methyla-
tion pattern that is consistent with the influence of the
genetic variation on expression and ultimately methyla-
tion. Using an indirect approach capitalizing on this
model, we identified 2 CpG sites, at KIAA1804 and
ANAPC2, which are consistent with a genetic influence. A
search for genetic factors likely to contribute to their
methylation levels identified their meQTL. At KIAA1804,
the linkage disequilibrium illustrated in Fig. 1 precludes
identifying the specific SNP(s) responsible for this genetic
effect. For ANAPC2, because of the limited number of
highly significant associations, the lead SNP, rs3087779,
appears to be the one responsible. For both KIAA1804
and ANAPC2, predictions of transcription factor binding
sites for the 2 alleles of their lead SNPs show allele specific
differences, providing support for our underlying model.
Although our approach to detect fenofibrate responsive

CpG sites is indirect, we feel that it has been successful in
identifying two CpG sites for future investigations.

Conclusions
A genetic approach that uses the analysis of outliers of
pre- and posttreatment familiality and variability distri-
butions has been successful in identifying fenofibrate re-
sponsive CpG sites.
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